cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304832 a(n) = n^2 + 25*n - 34 (n >=2).

Original entry on oeis.org

20, 50, 82, 116, 152, 190, 230, 272, 316, 362, 410, 460, 512, 566, 622, 680, 740, 802, 866, 932, 1000, 1070, 1142, 1216, 1292, 1370, 1450, 1532, 1616, 1702, 1790, 1880, 1972, 2066, 2162, 2260, 2360, 2462, 2566, 2672, 2780, 2890, 3002, 3116, 3232, 3350, 3470, 3592, 3716, 3842, 3970, 4100, 4232, 4366
Offset: 2

Views

Author

Emeric Deutsch, May 20 2018

Keywords

Comments

a(n) is the first Zagreb index of the Mycielskian of the path graph P[n] (n > =2). For the Mycielskian, see p. 205 of the West reference and/or the Wikipedia link.
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
For n>=3 the M-polynomial of the considered Mycielskian is 2*x^2*y^3 + 4*x^2*y^4 + 2*x^2*y^n + 2*(n-3)*x^3*y^4 + (n-2)*x^3*y^n +(n-3)*x^4*y^4.

References

  • D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

Programs

  • GAP
    List([2..60], n->n^2+25*n-34); # Muniru A Asiru, May 20 2018
  • Maple
    seq(n^2 + 25*n - 34, n = 2 .. 55);
  • PARI
    a(n) = n^2 + 25*n - 34 \\ Felix Fröhlich, May 20 2018
    
  • PARI
    Vec(2*x^2*(10 - 5*x - 4*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 21 2018
    

Formula

a(n) = A132767(n) - 34. - Felix Fröhlich, May 20 2018
From Colin Barker, May 21 2018: (Start)
G.f.: 2*x^2*(10 - 5*x - 4*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)