A304832 a(n) = n^2 + 25*n - 34 (n >=2).
20, 50, 82, 116, 152, 190, 230, 272, 316, 362, 410, 460, 512, 566, 622, 680, 740, 802, 866, 932, 1000, 1070, 1142, 1216, 1292, 1370, 1450, 1532, 1616, 1702, 1790, 1880, 1972, 2066, 2162, 2260, 2360, 2462, 2566, 2672, 2780, 2890, 3002, 3116, 3232, 3350, 3470, 3592, 3716, 3842, 3970, 4100, 4232, 4366
Offset: 2
References
- D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Wikipedia, Mycielskian
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([2..60], n->n^2+25*n-34); # Muniru A Asiru, May 20 2018
-
Maple
seq(n^2 + 25*n - 34, n = 2 .. 55);
-
PARI
a(n) = n^2 + 25*n - 34 \\ Felix Fröhlich, May 20 2018
-
PARI
Vec(2*x^2*(10 - 5*x - 4*x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 21 2018
Formula
a(n) = A132767(n) - 34. - Felix Fröhlich, May 20 2018
From Colin Barker, May 21 2018: (Start)
G.f.: 2*x^2*(10 - 5*x - 4*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4.
(End)
Comments