A304838 a(n) = 1944*n^2 - 5016*n + 3138 (n >= 1).
66, 882, 5586, 14178, 26658, 43026, 63282, 87426, 115458, 147378, 183186, 222882, 266466, 313938, 365298, 420546, 479682, 542706, 609618, 680418, 755106, 833682, 916146, 1002498, 1092738, 1186866, 1284882, 1386786, 1492578, 1602258, 1715826, 1833282, 1954626, 2079858
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- P. Manuel, R. Bharati, I. Rajasingh, and Chris Monica M, On minimum metric dimension of honeycomb networks, J. Discrete Algorithms, 6, 2008, 20-27.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([1..50], n->1944*n^2-5016*n+3138); # Muniru A Asiru, May 22 2018
-
Maple
seq(3138 - 5016*n + 1944*n^2, n = 1 .. 45);
-
Mathematica
Table[1944 n^2 - 5016 n + 3138, {n, 1, 40}] (* Bruno Berselli, May 22 2018 *) LinearRecurrence[{3,-3,1},{66,882,5586},40] (* Harvey P. Dale, Dec 02 2018 *)
-
PARI
Vec(6*x*(11 + 114*x + 523*x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018
Formula
G.f.: 6*x*(11 + 114*x + 523*x^2)/(1 - x)^3. - Bruno Berselli, May 22 2018
Comments