A304934
a(0) = 0, a(1) = 1 and a(n) = 2*a(n-1)/(n-1) + 64*a(n-2) for n > 1.
Original entry on oeis.org
0, 1, 2, 66, 172, 4310, 12732, 280084, 894872, 18149094, 61304940, 1173803004, 4136934888, 75812881404, 276427353048, 4891514031720, 18343552465968, 315349842088326, 1211087339244108, 20316955153568876, 79648216569893320, 1308249951485397396
Offset: 0
A304944
a(0) = 0, a(1) = 1 and a(n) = 6*a(n-1)/(n-1) + 16*a(n-2) for n > 1.
Original entry on oeis.org
0, 1, 6, 34, 164, 790, 3572, 16212, 71048, 312678, 1345220, 5809980, 24692600, 105305980, 443684360, 1875046120, 7848968208, 32944100998, 137210821092, 572842556332, 2376270786840, 9878362137364, 40842721771544, 169192718317336, 697620779210096
Offset: 0
-
[n le 2 select n-1 else 2*(3*Self(n-1) + 8*(n-2)*Self(n-2))/(n-2): n in [1..40]]; // G. C. Greubel, Jun 07 2023
-
CoefficientList[Series[x/((1-4*x)^(7/4)*(1+4*x)^(1/4)), {x,0,40}], x] (* G. C. Greubel, Jun 07 2023 *)
-
@CachedFunction
def a(n): # b = A304944
if n<2: return n
else: return 2*(3*a(n-1) + 8*(n-1)*a(n-2))//(n-1)
[a(n) for n in range(41)] # G. C. Greubel, Jun 07 2023
Showing 1-2 of 2 results.
Comments