cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304961 Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).

Original entry on oeis.org

1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Number of compositions of partitions of n into distinct parts. a(3) = 6: 3, 21, 12, 111, 2|1, 11|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split a composition of n into contiguous subsequences with strictly decreasing sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = (-1) * 2^(n-1). - Seiichi Manyama, Aug 22 2020

Examples

			From _Gus Wiseman_, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
  ()  (1)  (2)    (3)        (4)
           (1,1)  (1,2)      (1,3)
                  (2,1)      (2,2)
                  (1,1,1)    (3,1)
                  (2),(1)    (1,1,2)
                  (1,1),(1)  (1,2,1)
                             (2,1,1)
                             (3),(1)
                             (1,1,1,1)
                             (1,2),(1)
                             (2,1),(1)
                             (1,1,1),(1)
(End)
		

Crossrefs

The non-strict version is A075900.
Starting with a reversed partition gives A323583.
Starting with a partition gives A336134.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings with distinct sums are A336127.

Programs

  • Mathematica
    nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020

Formula

G.f.: Product_{k>=1} (1 + A011782(k)*x^k).
a(n) ~ 2^n * exp(2*sqrt(-polylog(2, -1/2)*n)) * (-polylog(2, -1/2))^(1/4) / (sqrt(6*Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 19 2019