A304961 Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Jul 13 2020: (Start) The a(0) = 1 through a(4) = 12 splittings: () (1) (2) (3) (4) (1,1) (1,2) (1,3) (2,1) (2,2) (1,1,1) (3,1) (2),(1) (1,1,2) (1,1),(1) (1,2,1) (2,1,1) (3),(1) (1,1,1,1) (1,2),(1) (2,1),(1) (1,1,1),(1) (End)
Links
Crossrefs
Programs
-
Mathematica
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
-
PARI
N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
Formula
G.f.: Product_{k>=1} (1 + A011782(k)*x^k).
a(n) ~ 2^n * exp(2*sqrt(-polylog(2, -1/2)*n)) * (-polylog(2, -1/2))^(1/4) / (sqrt(6*Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 19 2019
Comments