cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304966 Expansion of Product_{k>=1} 1/(1 - x^k)^(p(k)-1), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 0, 1, 2, 5, 8, 18, 30, 61, 107, 203, 358, 663, 1162, 2093, 3666, 6481, 11258, 19652, 33874, 58464, 100046, 171032, 290563, 492745, 831393, 1399655, 2346707, 3924873, 6541472, 10875575, 18025629, 29804125, 49143254, 80841455, 132651457, 217179366, 354745107, 578215807
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Euler transform of A000065.
Convolution of the sequences A001970 and A010815.

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d)-d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 22 2018
  • Mathematica
    nmax = 38; CoefficientList[Series[Product[1/(1 - x^k)^(PartitionsP[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (PartitionsP[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 38}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A000065(k).