cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304976 Number of achiral color patterns (set partitions) for a row or loop of length n using exactly 6 colors (sets).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 18, 46, 195, 461, 1696, 3836, 13097, 28819, 94094, 203322, 644911, 1376217, 4279692, 9051592, 27755013, 58319855, 176992090, 370087718, 1114496747, 2321721493, 6950406008, 14437363668, 43021681249, 89162536011, 264732674406, 547676535634
Offset: 0

Views

Author

Robert A. Russell, May 22 2018

Keywords

Comments

Two color patterns are equivalent if we permute the colors. Achiral color patterns must be equivalent if we reverse the order of the pattern.

Examples

			For a(7) = 3, the color patterns for both rows and loops are ABCDCEF, ABCDEBF, and ABCDEFA.
		

Crossrefs

Sixth column of A304972.
Sixth column of A140735 for odd n.
Sixth column of A293181 for even n.
Coefficients that determine the first formula and generating function are row 6 of A305008.

Programs

  • Magma
    I:=[0,0,0,0,0,1,3,18,46]; [0] cat [n le 9 select I[n] else Self(n-1) +16*Self(n-2) -16*Self(n-3) -91*Self(n-4) +91*Self(n-5) +216*Self(n-6) -216*Self(n-7) -180*Self(n-8) +180*Self(n-9): n in [1..40]]; // G. C. Greubel, Oct 16 2018
  • Mathematica
    Table[If[EvenQ[n], StirlingS2[n/2 + 3, 6] - 3 StirlingS2[n/2 + 2, 6] - 8 StirlingS2[n/2 + 1, 6] + 16 StirlingS2[n/2, 6], 3 StirlingS2[(n + 5)/2, 6] - 17 StirlingS2[(n + 3)/2, 6] + 20 StirlingS2[(n + 1)/2, 6]], {n, 0, 40}]
    Join[{0}, LinearRecurrence[{1, 16, -16, -91, 91, 216, -216, -180, 180}, {0, 0, 0, 0, 0, 1, 3, 18, 46}, 40]] (* Robert A. Russell, Oct 14 2018 *)
    CoefficientList[Series[x^6 *(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3) / Product[1 - k*x^2, {k,1,6}], {x, 0, 50}], x] (* Stefano Spezia, Oct 20 2018 *)
  • PARI
    m=40; v=concat([0,0,0,0,0,1,3,18,46], vector(m-9)); for(n=10, m, v[n] = v[n-1] +16*v[n-2] -16*v[n-3] -91*v[n-4] +91*v[n-5] +216*v[n-6] -216*v[n-7] -180*v[n-8] +180*v[n-9]); concat([0], v) \\ G. C. Greubel, Oct 16 2018
    

Formula

a(n) = [n==0 mod 2] * (S2(n/2+3, 6) - 3*S2(n/2+2, 6) - 8*S2(n/2+1, 6) + 16*S2(n/2, 6)) + [n==1 mod 2] * (3*S2((n+5)/2, 6) - 17*S2((n+3)/2, 6) + 20*S2((n+1)/2, 6 )) where S2(n,k) is the Stirling subset number A008277(n,k).
G.f.: x^6 *(1+x)*(1-4*x^2)*(1+2*x-x^2-4*x^3) / Product_{k=1..6} (1 - k*x^2).
a(n) = A304972(n,6).
a(2m-1) = A140735(m,6).
a(2m) = A293181(m,6).