cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A326750 BII-numbers of clutters (connected antichains of nonempty sets).

Original entry on oeis.org

0, 1, 2, 4, 8, 16, 20, 32, 36, 48, 52, 64, 128, 256, 260, 272, 276, 292, 304, 308, 320, 512, 516, 532, 544, 548, 560, 564, 576, 768, 772, 784, 788, 800, 804, 816, 820, 832, 1024, 1040, 1056, 1072, 1088, 2048, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge.

Examples

			The sequence of all clutters together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    8: {{3}}
   16: {{1,3}}
   20: {{1,2},{1,3}}
   32: {{2,3}}
   36: {{1,2},{2,3}}
   48: {{1,3},{2,3}}
   52: {{1,2},{1,3},{2,3}}
   64: {{1,2,3}}
  128: {{4}}
  256: {{1,4}}
  260: {{1,2},{1,4}}
  272: {{1,3},{1,4}}
  276: {{1,2},{1,3},{1,4}}
  292: {{1,2},{2,3},{1,4}}
  304: {{1,3},{2,3},{1,4}}
  308: {{1,2},{1,3},{2,3},{1,4}}
  320: {{1,2,3},{1,4}}
		

Crossrefs

The number of clutters spanning n vertices is A048143(n).
Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&]
  • Python
    # see linked program

Formula

Intersection of A326749 and A326704.

A304985 Number of labeled clutters (connected antichains) spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 4, 40, 1344, 203136, 495598592, 309065330371840, 14369391920653644779049472
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 4 clutters:
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Formula

For n > 1, a(n) = A048143(n) * 2^n.

A304982 Number of unlabeled clutters (connected antichains) spanning up to n vertices with singleton edges allowed.

Original entry on oeis.org

1, 2, 5, 19, 137, 3053, 822526
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

The initial terms 1, 2, 5, 19 are the same as A304981 but the remaining terms differ.

Examples

			Non-isomorphic representatives of the a(3) = 19 clutters:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{2},{1,2}}
{{1,3},{2,3}}
{{3},{1,2,3}}
{{1},{2},{1,2}}
{{1,2},{1,3},{2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{3},{1,2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Partial sums of A304983.

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A304983 Number of unlabeled clutters (connected antichains) spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 3, 14, 118, 2916, 819473
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 14 clutters:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{2},{3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Inverse Euler transform of A304997. - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A304981 Number of unlabeled clutters (connected antichains) spanning up to n vertices without singleton edges.

Original entry on oeis.org

1, 1, 2, 5, 19, 176, 16118, 489996568
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 5 clutters:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
Non-isomorphic representatives of the a(4) = 19 clutters:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

Partial sums of A261006(n > 0).

A304984 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n} with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 56, 1533, 210302, 496838435, 309068803876372, 14369391923126181310256825
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(2) = 7 clutters:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Binomial transform of A304985(n > 0).

A305005 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 1, 2, 9, 111, 6829, 7783192, 2414627236071, 56130437209370100252463
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 9 clutters:
  {}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Binomial transform of A048143 if we assume A048143(1) = 0.
a(n) = A198085(n) - n + 1. - Gus Wiseman, Jun 11 2018
Showing 1-7 of 7 results.