cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A305843 Number of labeled spanning intersecting set-systems on n vertices.

Original entry on oeis.org

1, 1, 3, 27, 1245, 1308285, 912811093455, 291201248260060977862887, 14704022144627161780742038728709819246535634969, 12553242487940503914363982718112298267975272588471811456164576678961759219689708372356843289
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 27 spanning intersecting set-systems:
{{1,2,3}}
{{1},{1,2,3}}
{{2},{1,2,3}}
{{3},{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,2},{1,2,3}}
{{1,3},{2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1},{1,2},{1,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
{{2},{1,2},{2,3}}
{{2},{1,2},{1,2,3}}
{{2},{2,3},{1,2,3}}
{{3},{1,3},{2,3}}
{{3},{1,3},{1,2,3}}
{{3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1},{1,2},{1,3},{1,2,3}}
{{2},{1,2},{2,3},{1,2,3}}
{{3},{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{}]]&],{n,1,4}]

Formula

Inverse binomial transform of A051185.

A305844 Number of labeled spanning intersecting antichains on n vertices.

Original entry on oeis.org

1, 1, 1, 5, 50, 2330, 1407712, 229800077244, 423295097236295093695
Offset: 0

Views

Author

Gus Wiseman, Jun 11 2018

Keywords

Comments

An intersecting antichain S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection, and none of which is a subset of any other. S is spanning if every vertex is contained in some edge.

Examples

			The a(3) = 5 spanning intersecting antichains:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    Length/@Table[Select[Subsets[Rest[Subsets[Range[n]]]],And[Union@@#==Range[n],FreeQ[Intersection@@@Tuples[#,2],{},{1}],Select[Tuples[#,2],UnsameQ@@#&&Complement@@#=={}&]=={}]&],{n,1,4}]

Formula

Inverse binomial transform of A001206(n + 1).

A304982 Number of unlabeled clutters (connected antichains) spanning up to n vertices with singleton edges allowed.

Original entry on oeis.org

1, 2, 5, 19, 137, 3053, 822526
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

The initial terms 1, 2, 5, 19 are the same as A304981 but the remaining terms differ.

Examples

			Non-isomorphic representatives of the a(3) = 19 clutters:
{}
{{1}}
{{1,2}}
{{1,2,3}}
{{2},{1,2}}
{{1,3},{2,3}}
{{3},{1,2,3}}
{{1},{2},{1,2}}
{{1,2},{1,3},{2,3}}
{{3},{1,2},{2,3}}
{{3},{1,3},{2,3}}
{{2},{3},{1,2,3}}
{{1},{2},{3},{1,2,3}}
{{2},{3},{1,2},{1,3}}
{{3},{1,2},{1,3},{2,3}}
{{2},{3},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{2},{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Partial sums of A304983.

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A304983 Number of unlabeled clutters (connected antichains) spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 3, 14, 118, 2916, 819473
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 14 clutters:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{2},{3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Inverse Euler transform of A304997. - Andrew Howroyd, Aug 14 2019

Extensions

a(5)-a(6) from Andrew Howroyd, Aug 14 2019

A304986 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n}, if clutters of the form {{x}} are allowed for any vertex x.

Original entry on oeis.org

1, 2, 4, 12, 115, 6834, 7783198, 2414627236078, 56130437209370100252471
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 12 clutters:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

a(n > 0) = A198085(n) + 1.
a(n) = A305005(n) + n.

A304999 Number of labeled antichains of finite sets spanning n vertices with singleton edges allowed.

Original entry on oeis.org

1, 1, 5, 53, 1577, 212137, 496946349, 309068823607069, 14369391923126237496803793, 146629927766168786109802623629262590838145873
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.

Examples

			The a(2) = 5 antichains:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Exponential transform of A304985.
Inverse binomial transform of A305000. - Aniruddha Biswas, May 12 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 12 2024

A304981 Number of unlabeled clutters (connected antichains) spanning up to n vertices without singleton edges.

Original entry on oeis.org

1, 1, 2, 5, 19, 176, 16118, 489996568
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 5 clutters:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
Non-isomorphic representatives of the a(4) = 19 clutters:
  {}
  {{1,2}}
  {{1,2,3}}
  {{1,2,3,4}}
  {{1,3},{2,3}}
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

Formula

Partial sums of A261006(n > 0).

A304984 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n} with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 56, 1533, 210302, 496838435, 309068803876372, 14369391923126181310256825
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(2) = 7 clutters:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Binomial transform of A304985(n > 0).

A305005 Number of labeled clutters (connected antichains) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 1, 2, 9, 111, 6829, 7783192, 2414627236071, 56130437209370100252463
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 9 clutters:
  {}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Formula

Binomial transform of A048143 if we assume A048143(1) = 0.
a(n) = A198085(n) - n + 1. - Gus Wiseman, Jun 11 2018
Showing 1-9 of 9 results.