cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305075 a(n) = 32*n - 24 (n>=1).

Original entry on oeis.org

8, 40, 72, 104, 136, 168, 200, 232, 264, 296, 328, 360, 392, 424, 456, 488, 520, 552, 584, 616, 648, 680, 712, 744, 776, 808, 840, 872, 904, 936, 968, 1000, 1032, 1064, 1096, 1128, 1160, 1192, 1224, 1256, 1288, 1320, 1352, 1384, 1416, 1448, 1480, 1512, 1544, 1576
Offset: 1

Views

Author

Emeric Deutsch, May 26 2018

Keywords

Comments

a(n) (n>=2) is the second Zagreb index of the single oxide chain SOX(n), defined pictorially in the Simonraj et al. reference (Fig. 4, where SOX(9) is shown marked as OX(1,9)).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of SL(n) is M(SL(n);x,y) = 2*x^2*y^2 + 2*n*x^2*y^4 + (n - 2)*x^4*y^4 (n>=2).

Crossrefs

Programs

  • GAP
    List([1..50], n->32*n-24); # Muniru A Asiru, May 27 2018
    
  • Maple
    seq(32*n - 24, n = 1 .. 50);
  • Mathematica
    32*Range[60]-24 (* or *) LinearRecurrence[{2,-1},{8,40},60] (* Harvey P. Dale, Mar 13 2022 *)
  • PARI
    Vec(8*x*(1 + 3*x) / (1 - x)^2 + O(x^50)) \\ Colin Barker, May 29 2018

Formula

a(n) = A063164(n) for n > 1.
From Colin Barker, May 29 2018: (Start)
G.f.: 8*x*(1 + 3*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)