cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305200 Decimal expansion of the real part of continued exponential of i.

Original entry on oeis.org

5, 7, 6, 4, 1, 2, 7, 2, 3, 0, 3, 1, 4, 3, 5, 2, 8, 3, 1, 4, 8, 2, 8, 9, 2, 3, 9, 8, 8, 7, 0, 6, 8, 4, 7, 6, 2, 7, 8, 0, 9, 9, 0, 1, 1, 2, 2, 2, 1, 6, 8, 2, 8, 0, 5, 6, 6, 2, 6, 5, 7, 4, 1, 1, 9, 3, 2, 8, 5, 3, 4, 4, 4, 1, 4, 2, 4, 7, 1, 9, 9, 4, 5, 2, 0, 5, 2, 8, 7, 1, 0, 4, 3, 9, 0, 4, 4, 8, 7, 5, 8, 9, 5, 9, 8, 8
Offset: 0

Views

Author

Keerthi Vasan Gopala, May 27 2018

Keywords

Examples

			0.576412723031435283148289239887068476278...
		

References

  • This is the real part of e^(i*e^(i*e^(i...))).

Crossrefs

Programs

  • Mathematica
    RealDigits[Re[I*LambertW[-I]],10,120][[1]] (* Harvey P. Dale, Dec 01 2018 *)
    RealDigits[x /. FindRoot[E^(x*Tan[x]) == Cos[x]/x, {x, 1/2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Oct 02 2021 *)

Formula

Equals Re(i*LambertW(-i)). - Alois P. Heinz, May 27 2018
From Vaclav Kotesovec, Oct 02 2021: (Start)
Root of the equation exp(x*tan(x)) = cos(x)/x.
Equals Im(LambertW(i)). (End)

Extensions

More digits from Alois P. Heinz, May 27 2018