cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305331 Multiplicative order of 5 (mod p^2), where p = prime(n), or 0 if 5 and p are not coprime.

Original entry on oeis.org

1, 6, 0, 42, 55, 52, 272, 171, 506, 406, 93, 1332, 820, 1806, 2162, 2756, 1711, 1830, 1474, 355, 5256, 3081, 6806, 3916, 9312, 2525, 10506, 11342, 2943, 12656, 5334, 8515, 18632, 9591, 5513, 11325, 24492, 8802, 27722, 29756, 15931, 2715, 3629, 37056, 38612
Offset: 1

Views

Author

Felix Fröhlich, May 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[p==5, 0, MultiplicativeOrder[5, p^2]], {p, Prime@ Range@ 45}] (* Giovanni Resta, May 31 2018 *)
  • PARI
    a(n) = my(p=prime(n)); if(p==5, return(0), return(znorder(Mod(5, p^2))))

A305332 Multiplicative order of 5 (mod A123692(n)^2).

Original entry on oeis.org

1, 10385, 40486, 13367790, 1645333506, 6692367336, 11796759175
Offset: 1

Views

Author

Felix Fröhlich, May 30 2018

Keywords

Comments

From Eric Chen, Jun 07 2018: (Start)
b known Wieferich primes in base b (multiplicative order of b mod these primes (also these primes^2)) (if the order is p-1, then b is a primitive root to mod this prime (but not mod this prime^2), see A055578)
2 1093 (364), 3511 (1755)
3 11 (5), 1006003 (1006002)
4 1093 (182), 3511 (1755)
5 2 (1), 20771 (10385), 40487 (40486), 53471161 (13367790), 1645333507 (1645333506), 6692367337 (6692367336), 188748146801 (11796759175)
6 66161 (66160), 534851 (106970), 3152573 (788143)
7 5 (4), 491531 (245765)
8 3 (2), 1093 (364), 3511 (585)
9 2 (1), 11 (5), 1006003 (503001)
10 3 (1), 487 (486), 56598313 (56598312)
11 71 (70)
12 2693 (2692), 123653 (123652)
13 2 (1), 863 (862), 1747591 (873795)
14 29 (28), 353 (352), 7596952219 (7596952218)
15 29131 (29130), 119327070011 (59663535005)
16 1093 (91), 3511 (1755)
17 2 (1), 3 (2), 46021 (7670), 48947 (24473), 478225523351 (478225523350)
18 5 (4), 7 (3), 37 (36), 331 (110), 33923 (33922), 1284043 (428014)
19 3 (1), 7 (6), 13 (12), 43 (42), 137 (68), 63061489 (63061488)
20 281 (140), 46457 (46456), 9377747 (9377746), 122959073 (122959072)
21 2 (1)
22 13 (3), 673 (224), 1595813 (797906), 492366587 (246183293), 9809862296159 (44999368331)
23 13 (6), 2481757 (827252), 13703077 (13703076), 15546404183 (7773202091), 2549536629329 (2549536629328)
24 5 (2), 25633 (6408)
These orders n will satisfy that Phi_n(b) is divisible by p^2, where Phi is the cyclotomic polynomial. (Usually, Phi_n(b) is squarefree, but these are all exceptions; i.e., if p^2 divides Phi_n(b) (except the case p = 2, n = 2 and b == 3 (mod 4)), then p is a Wieferich prime in base b.)
(End)

Crossrefs

Programs

  • PARI
    v=[2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801]; for(k=1, #v, print1(znorder(Mod(5, v[k]^2)), ", "))

Formula

a(n) = A305331(A123692(n)).
Showing 1-2 of 2 results.