A305459 a(0) = 1, a(1) = 3, a(n) = 3*n*a(n-1) + a(n-2).
1, 3, 19, 174, 2107, 31779, 574129, 12088488, 290697841, 7860930195, 236118603691, 7799774851998, 281028013275619, 10967892292601139, 460932504302523457, 20752930585906156704, 996601600627798045249, 50847434562603606464403
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..380
Programs
-
GAP
List([0..20],n->Sum([0..Int(n/2)],k->((Factorial(n-k))/(Factorial(k))*Binomial(n-k,k)*3^(n-2*k)))); # Muniru A Asiru, Jun 01 2018
-
Maple
a:=proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n>=2 then 3*n*procname(n-1)-procname(n-2) fi; end: seq(a(n),n=0..20); # Muniru A Asiru, Jun 01 2018
-
Mathematica
RecurrenceTable[{a[0]==1,a[1]==3,a[n]==3n a[n-1]+a[n-2]},a,{n,20}] (* Harvey P. Dale, Aug 27 2019 *)
-
PARI
{a(n) = sum(k=0, n/2, ((n-k)!/k!)*binomial(n-k,k)*3^(n-2*k))}
Formula
a(n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*3^(n-2*k).
a(n) ~ BesselI(0, 2/3) * n! * 3^n. - Vaclav Kotesovec, Jun 03 2018
Comments