A305460 a(0) = 1, a(1) = 3, a(n) = 3*n*a(n-1) + 2*a(n-2).
1, 3, 20, 186, 2272, 34452, 624680, 13187184, 317741776, 8605402320, 258797553152, 8557530058656, 308588677217920, 12052073471616192, 506804263162315904, 22830295989247448064, 1096867816010202138880, 55985919208498803979008
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..380
Programs
-
GAP
List([0..20],n->Sum([0..Int(n/2)],k->((Factorial(n-k))/(Factorial(k))*Binomial(n-k,k)*3^(n-2*k)*2^k))); # Muniru A Asiru, Jun 01 2018
-
Maple
a:=proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n>=2 then 3*n*procname(n-1)+2*procname(n-2) fi; end: seq(a(n),n=0..20); # Muniru A Asiru, Jun 01 2018
-
Mathematica
nxt[{n_,a_,b_}]:={n+1,b,3b(n+1)+2a}; NestList[nxt,{1,1,3},20][[;;,2]] (* Harvey P. Dale, Feb 08 2025 *)
-
PARI
{a(n) = sum(k=0, n/2, ((n-k)!/k!)*binomial(n-k, k)*3^(n-2*k)*2^k)}
Formula
a(n) = Sum_{k=0..floor(n/2)} ((n-k)!/k!)*binomial(n-k,k)*3^(n-2*k)*2^k.
a(n) ~ BesselI(0, 2*sqrt(2)/3) * n! * 3^n. - Vaclav Kotesovec, Jun 03 2018
Comments