cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305612 Expansion of 1/2 * (((1 + 2*x)/(1 - 2*x))^(3/2) - 1).

Original entry on oeis.org

0, 3, 9, 22, 51, 114, 250, 540, 1155, 2450, 5166, 10836, 22638, 47124, 97812, 202488, 418275, 862290, 1774630, 3646500, 7482618, 15334748, 31391724, 64194312, 131151566, 267711444, 546031500, 1112864200, 2266587900, 4613409000, 9384609960, 19079454960
Offset: 0

Views

Author

Seiichi Manyama, Jun 06 2018

Keywords

Comments

Let 1/2 * (((1 + k*x)/(1 - k*x))^(m/k) - 1) = a(0) + a(1)*x + a(2)*x^2 + ...
Then n*a(n) = 2*m*a(n-1) + k^2*(n-2)*a(n-2) for n > 1.

Crossrefs

1/2 * (((1 + 2*x)/(1 - 2*x))^(m/2) - 1): A001405(n-1) (m=1), this sequence (m=3).
Cf. A305031.

Programs

  • Maple
    seq(coeff(series((1/2)*(((1+2*x)/(1-2*x))^(3/2)-1), x,n+1),x,n),n=0..35); # Muniru A Asiru, Jun 06 2018
  • Mathematica
    CoefficientList[Series[((((1+2x)/(1-2x))^(3/2))-1)/2,{x,0,40}],x] (* Harvey P. Dale, Nov 04 2020 *)

Formula

n*a(n) = 6*a(n-1) + 4*(n-2)*a(n-2) for n > 1.
a(n) = A305031(n)/2 for n > 0.