cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305621 Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 18, 12, 1, 18, 78, 120, 60, 1, 34, 273, 780, 900, 360, 1, 70, 921, 4212, 8400, 7560, 2520, 1, 134, 2916, 20424, 63000, 95760, 70560, 20160, 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440, 1, 526, 28065, 409380, 2551560, 8217720, 14817600, 15120000, 8164800, 1814400, 1, 1054, 85773, 1749780, 14804700, 64615680, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Examples

			The triangle begins:
  1;
  1,   1;
  1,   4,    3;
  1,   8,   18,      12;
  1,  18,   78,     120,      60;
  1,  34,  273,     780,     900,     360;
  1,  70,  921,    4212,    8400,    7560,     2520;
  1, 134, 2916,   20424,   63000,   95760,    70560,    20160;
  1, 270, 9150,   93360,  417120,  952560,  1164240,   725760,  181440;
  ...
For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Columns 1-6 are A057427, A056309, A056310, A056311, A056312, and A056313.
Row sums are A326963.
A019538 counts chiral pairs as two, i.e., the rows are not reversible.

Programs

  • Mathematica
    Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ Andrew Howroyd, Sep 13 2019

Formula

T(n,k) = (k!/2) * (S2(n,k) + S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
T(n,k) = (A019538(n,k) + A019538(ceiling(n/2),k)) / 2.
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) + k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 25 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A277504(n, i). - Andrew Howroyd, Sep 13 2019