A305624 Number of chiral pairs of rows of n colors with exactly 4 different colors.
0, 0, 0, 12, 120, 780, 4188, 20400, 93120, 409140, 1748220, 7337232, 30386160, 124696740, 508250988, 2061566400, 8331954240, 33585590580, 135115594140, 542784981552, 2178107091600, 8733341736900, 34996103558988, 140172672276000, 561255446475360, 2246716252964820, 8991948337723260, 35983044114659472, 143977928423467440, 576048972752188260, 2304607666801990188, 9219666007300387200, 36882370043723748480
Offset: 1
Examples
For a(4) = 12, the chiral pairs are the 4! = 24 permutations of ABCD, each paired with its reverse.
Crossrefs
Programs
-
Mathematica
k=4; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
PARI
a(n) = my(k=4); (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2)); \\ Michel Marcus, Jun 07 2018
Formula
a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=4 colors used and where S2(n,k) is the Stirling subset number A008277.
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=4 colors used.
Comments