cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A305622 Triangle read by rows: T(n,k) is the number of chiral pairs of rows of n colors with exactly k different colors.

Original entry on oeis.org

0, 0, 1, 0, 2, 3, 0, 6, 18, 12, 0, 12, 72, 120, 60, 0, 28, 267, 780, 900, 360, 0, 56, 885, 4188, 8400, 7560, 2520, 0, 120, 2880, 20400, 63000, 95760, 70560, 20160, 0, 240, 9000, 93120, 417000, 952560, 1164240, 725760, 181440, 0, 496, 27915, 409140, 2551440, 8217720, 14817600, 15120000, 8164800, 1814400, 0, 992, 85233, 1748220, 14802900, 64614960, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			The triangle begins:
  0;
  0,   1;
  0,   2,     3;
  0,   6,    18,     12;
  0,  12,    72,    120,      60;
  0,  28,   267,    780,     900,     360;
  0,  56,   885,   4188,    8400,    7560,     2520;
  0, 120,  2880,  20400,   63000,   95760,    70560,    20160;
  0, 240,  9000,  93120,  417000,  952560,  1164240,   725760,  181440;
  ...
For T(3,2)=2, the chiral pairs are AAB-BAA and ABB-BBA.  For T(3,3)=3, the chiral pairs are ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Columns 1-6 are A000004, A122746(n-2), A305623, A305624, A305625, and A305626.
Row sums are A327091.

Programs

  • Maple
    with(combinat):
    a:=(n,k)->(factorial(k)/2)* (Stirling2(n,k)-Stirling2(ceil(n/2),k)): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Sep 27 2018
  • Mathematica
    Table[(k!/2) (StirlingS2[n, k] - StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2));
    for (n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 27 2018

Formula

T(n,k) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
T(n,k) = (A019538(n,k) - A019538(ceiling(n/2),k)) / 2.
T(n,k) = A019538(n,k) - A305621(n,k).
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) - k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 26 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293500(n, i). - Andrew Howroyd, Sep 13 2019

A056311 Number of reversible strings with n beads using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 12, 120, 780, 4212, 20424, 93360, 409380, 1749780, 7338792, 30394560, 124705140, 508291812, 2061607224, 8332140720, 33585777060, 135116412660, 542785800072, 2178110589600, 8733345234900
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

Examples

			For n=4, the 12 rows are 12 permutations of ABCD that do not include any mutual reversals.  Each of the 12 chiral pairs, such as ABCD-DCBA, is then counted just once. - _Robert A. Russell_, Sep 25 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A032121.
Column 4 of A305621.
Equals (A000919 + A056455) / 2 = A000919 - A305624 = A305624 + A056455.

Programs

  • Mathematica
    k=4; Table[(StirlingS2[i,k]+StirlingS2[Ceiling[i/2],k])k!/2,{i,k,30}] (* Robert A. Russell, Nov 25 2017 *)
    CoefficientList[Series[12 x^3 (3 x + 1) (8 x^4 - 3 x^3 - 2 x^2 - x + 1) / ((x - 1) (4 x - 1) (3 x - 1) (2 x + 1) (2 x - 1) (3 x^2 - 1) (2 x^2 - 1)), {x, 0, 33}], x] (* Vincenzo Librandi, Sep 26 2018 *)

Formula

Equals A032121(n) - 4*A032120(n) + 6*A005418(n+1) - 4.
G.f.: 12*x^4*(3*x+1)*(8*x^4-3*x^3-2*x^2-x+1)/ ((x-1) * (4*x-1) * (3*x-1) * (2*x+1) * (2*x -1) * (3*x^2-1) * (2*x^2-1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = k! (S2(n,k) + S2(ceiling(n/2),k)) / 2, where k=4 is the number of colors and S2 is the Stirling subset number. - Robert A. Russell, Sep 25 2018
Showing 1-2 of 2 results.