cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305621 Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 18, 12, 1, 18, 78, 120, 60, 1, 34, 273, 780, 900, 360, 1, 70, 921, 4212, 8400, 7560, 2520, 1, 134, 2916, 20424, 63000, 95760, 70560, 20160, 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440, 1, 526, 28065, 409380, 2551560, 8217720, 14817600, 15120000, 8164800, 1814400, 1, 1054, 85773, 1749780, 14804700, 64615680, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Examples

			The triangle begins:
  1;
  1,   1;
  1,   4,    3;
  1,   8,   18,      12;
  1,  18,   78,     120,      60;
  1,  34,  273,     780,     900,     360;
  1,  70,  921,    4212,    8400,    7560,     2520;
  1, 134, 2916,   20424,   63000,   95760,    70560,    20160;
  1, 270, 9150,   93360,  417120,  952560,  1164240,   725760,  181440;
  ...
For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB.
		

Crossrefs

Columns 1-6 are A057427, A056309, A056310, A056311, A056312, and A056313.
Row sums are A326963.
A019538 counts chiral pairs as two, i.e., the rows are not reversible.

Programs

  • Mathematica
    Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
  • PARI
    T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ Andrew Howroyd, Sep 13 2019

Formula

T(n,k) = (k!/2) * (S2(n,k) + S2(ceiling(n/2),k)) where S2(n,k) is the Stirling subset number A008277.
T(n,k) = (A019538(n,k) + A019538(ceiling(n/2),k)) / 2.
G.f. for column k: k! x^k / (2*Product_{i=1..k}(1-ix)) + k! (x^(2k-1)+x^(2k)) / (2*Product{i=1..k}(1-i x^2)). - Robert A. Russell, Sep 25 2018
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A277504(n, i). - Andrew Howroyd, Sep 13 2019

A056328 Number of reversible string structures with n beads using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 1, 6, 37, 183, 877, 3930, 17185, 73095, 306361, 1267266, 5198557, 21182343, 85910917, 347187210, 1399451545, 5629911015, 22616256721, 90754855026, 363890126677, 1458172596903, 5840531635357, 23385650196090
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent. Permuting the colors will not change the structure.
Number of set partitions for an unoriented row of n elements using exactly four different elements. An unoriented row is equivalent to its reverse. - Robert A. Russell, Oct 14 2018

Examples

			For a(5)=6, the color patterns are ABCDA, ABCBD, AABCD, ABACD, ABCAD, and ABBCD. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column 4 of A284949.
Cf. A056311.
Cf. A000453 (oriented), A320527 (chiral), A304974 (achiral).

Programs

  • Mathematica
    k=4; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+2,4] - StirlingS2[n/2+1,4] - 2StirlingS2[n/2,4], 2StirlingS2[(n+3)/2,4] - 4StirlingS2[(n+1)/2,4]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
    Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
    k = 4; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
    LinearRecurrence[{8, -12, -44, 121, 12, -228, 144}, {0, 0, 0, 1, 6, 37, 183}, 30] (* Robert A. Russell, Oct 14 2018 *)

Formula

a(n) = A056323(n) - A001998(n-1).
Empirical g.f.: -x^4*(3*x^3 + x^2 - 2*x + 1) / ((x-1)*(2*x-1)*(2*x+1)*(3*x-1)*(4*x-1)*(3*x^2-1)). - Colin Barker, Nov 25 2012
From Robert A. Russell, Oct 14 2018: (Start)
a(n) = (S2(n,k) + A(n,k))/2, where k=4 is the number of colors (sets), S2 is the Stirling subset number A008277 and A(n,k) = [n>1] * (k*A(n-2,k) + A(n-2,k-1) + A(n-2,k-2)) + [n<2 & n==k & n>=0].
a(n) = (A000453(n) + A304974(n)) / 2 = A000453(n) - A320527(n) = A320527(n) + A304974(n). (End)

A305624 Number of chiral pairs of rows of n colors with exactly 4 different colors.

Original entry on oeis.org

0, 0, 0, 12, 120, 780, 4188, 20400, 93120, 409140, 1748220, 7337232, 30386160, 124696740, 508250988, 2061566400, 8331954240, 33585590580, 135115594140, 542784981552, 2178107091600, 8733341736900, 34996103558988, 140172672276000, 561255446475360, 2246716252964820, 8991948337723260, 35983044114659472, 143977928423467440, 576048972752188260, 2304607666801990188, 9219666007300387200, 36882370043723748480
Offset: 1

Views

Author

Robert A. Russell, Jun 06 2018

Keywords

Comments

If the row is achiral, i.e., the same as its reverse, we ignore it. If different from its reverse, we count it and its reverse as a chiral pair.

Examples

			For a(4) = 12, the chiral pairs are the 4! = 24 permutations of ABCD, each paired with its reverse.
		

Crossrefs

Fourth column of A305622.
A056455(n) is number of achiral rows of n colors with exactly 4 different colors.

Programs

  • Mathematica
    k=4; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
  • PARI
    a(n) = my(k=4); (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2)); \\ Michel Marcus, Jun 07 2018

Formula

a(n) = (k!/2) * (S2(n,k) - S2(ceiling(n/2),k)), with k=4 colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A000919(n) - A056455(n)) / 2.
a(n) = A000919(n) - A056311(n) = A056311(n) - A056455(n).
G.f.: -(k!/2) * (x^(2k-1) + x^(2k)) / Product_{j=1..k} (1 - j*x^2) + (k!/2) * x^k / Product_{j=1..k} (1 - j*x) with k=4 colors used.

A056320 Number of primitive (aperiodic) reversible strings with n beads using exactly four different colors.

Original entry on oeis.org

0, 0, 0, 12, 120, 780, 4212, 20412, 93360, 409260, 1749780, 7338000, 30394560, 124700928, 508291692, 2061586800, 8332140720, 33585682920, 135116412660, 542785390680, 2178110585388, 8733343485120
Offset: 1

Views

Author

Keywords

Comments

A string and its reverse are considered to be equivalent.

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Cf. A056315.

Formula

sum mu(d)*A056311(n/d) where d|n.
Showing 1-4 of 4 results.