A305621
Triangle read by rows: T(n,k) is the number of rows of n colors with exactly k different colors counting chiral pairs as equivalent, i.e., the rows are reversible.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 8, 18, 12, 1, 18, 78, 120, 60, 1, 34, 273, 780, 900, 360, 1, 70, 921, 4212, 8400, 7560, 2520, 1, 134, 2916, 20424, 63000, 95760, 70560, 20160, 1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440, 1, 526, 28065, 409380, 2551560, 8217720, 14817600, 15120000, 8164800, 1814400, 1, 1054, 85773, 1749780, 14804700, 64615680, 161247240, 239500800, 209563200, 99792000, 19958400
Offset: 1
The triangle begins:
1;
1, 1;
1, 4, 3;
1, 8, 18, 12;
1, 18, 78, 120, 60;
1, 34, 273, 780, 900, 360;
1, 70, 921, 4212, 8400, 7560, 2520;
1, 134, 2916, 20424, 63000, 95760, 70560, 20160;
1, 270, 9150, 93360, 417120, 952560, 1164240, 725760, 181440;
...
For T(3,2)=4, the achiral color rows are ABA and BAB, while the chiral pairs are AAB-BAA and ABB-BBA. For T(3,3)=3, the color rows are all chiral pairs: ABC-CBA, ACB-BCA, and BAC-CAB.
A019538 counts chiral pairs as two, i.e., the rows are not reversible.
-
Table[(k!/2) (StirlingS2[n, k] + StirlingS2[Ceiling[n/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
-
T(n,k) = {k! * (stirling(n,k,2) + stirling((n+1)\2,k,2)) / 2} \\ Andrew Howroyd, Sep 13 2019
A056328
Number of reversible string structures with n beads using exactly four different colors.
Original entry on oeis.org
0, 0, 0, 1, 6, 37, 183, 877, 3930, 17185, 73095, 306361, 1267266, 5198557, 21182343, 85910917, 347187210, 1399451545, 5629911015, 22616256721, 90754855026, 363890126677, 1458172596903, 5840531635357, 23385650196090
Offset: 1
For a(5)=6, the color patterns are ABCDA, ABCBD, AABCD, ABACD, ABCAD, and ABBCD. The first two are achiral. - _Robert A. Russell_, Oct 14 2018
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
k=4; Table[(StirlingS2[n,k] + If[EvenQ[n], StirlingS2[n/2+2,4] - StirlingS2[n/2+1,4] - 2StirlingS2[n/2,4], 2StirlingS2[(n+3)/2,4] - 4StirlingS2[(n+1)/2,4]])/2, {n,30}] (* Robert A. Russell, Oct 14 2018 *)
Ach[n_, k_] := Ach[n, k] = If[n < 2, Boole[n == k && n >= 0], k Ach[n-2, k] + Ach[n-2, k-1] + Ach[n-2, k-2]]
k = 4; Table[(StirlingS2[n, k] + Ach[n, k])/2, {n, 1, 30}] (* Robert A. Russell, Oct 14 2018 *)
LinearRecurrence[{8, -12, -44, 121, 12, -228, 144}, {0, 0, 0, 1, 6, 37, 183}, 30] (* Robert A. Russell, Oct 14 2018 *)
A305624
Number of chiral pairs of rows of n colors with exactly 4 different colors.
Original entry on oeis.org
0, 0, 0, 12, 120, 780, 4188, 20400, 93120, 409140, 1748220, 7337232, 30386160, 124696740, 508250988, 2061566400, 8331954240, 33585590580, 135115594140, 542784981552, 2178107091600, 8733341736900, 34996103558988, 140172672276000, 561255446475360, 2246716252964820, 8991948337723260, 35983044114659472, 143977928423467440, 576048972752188260, 2304607666801990188, 9219666007300387200, 36882370043723748480
Offset: 1
For a(4) = 12, the chiral pairs are the 4! = 24 permutations of ABCD, each paired with its reverse.
A056455(n) is number of achiral rows of n colors with exactly 4 different colors.
-
k=4; Table[(k!/2) (StirlingS2[n,k] - StirlingS2[Ceiling[n/2],k]), {n, 1, 40}]
-
a(n) = my(k=4); (k!/2) * (stirling(n,k,2) - stirling(ceil(n/2),k,2)); \\ Michel Marcus, Jun 07 2018
A056320
Number of primitive (aperiodic) reversible strings with n beads using exactly four different colors.
Original entry on oeis.org
0, 0, 0, 12, 120, 780, 4212, 20412, 93360, 409260, 1749780, 7338000, 30394560, 124700928, 508291692, 2061586800, 8332140720, 33585682920, 135116412660, 542785390680, 2178110585388, 8733343485120
Offset: 1
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Showing 1-4 of 4 results.
Comments