A305701
Nonnegative integers whose decimal digits span an initial interval of {0,...,9}.
Original entry on oeis.org
0, 10, 100, 101, 102, 110, 120, 201, 210, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021, 1022, 1023, 1032, 1100, 1101, 1102, 1110, 1120, 1200, 1201, 1202, 1203, 1210, 1220, 1230, 1302, 1320, 2001, 2010, 2011, 2012, 2013, 2021, 2031, 2100, 2101, 2102, 2103
Offset: 1
-
filter:= proc(n) local L;
L:= convert(convert(n,base,10),set);
L = {$0..max(L)}
end proc:
select(filter, [$0..3000]); # Robert Israel, Jun 10 2018
-
Select[Range[0,10000],Union[IntegerDigits[#]]==Range[0,Max[IntegerDigits[#]]]&]
-
isok(n) = if (n==0, return (1)); my(d=Set(digits(n))); (vecmin(d) == 0) && (vecmax(d) == #d - 1); \\ Michel Marcus, Jul 05 2018
A305714
Number of finite sequences of positive integers of length n that are polydivisible and strictly pandigital.
Original entry on oeis.org
1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1
Offset: 0
Sequence of sets of n-digit numbers that are weakly polydivisible and strictly pandigital is (with A = 10):
{0}
{1}
{12}
{123,321}
{}
{}
{123654,321654}
{}
{38165472}
{381654729}
{381654729A}
Cf.
A000670,
A010784,
A030299,
A050289,
A143671,
A144688,
A156069,
A156071,
A158242,
A163574,
A240763,
A305701,
A305712,
A305715.
A305715
Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 2, 1, 1, 2, 3, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 8, 1, 6, 5, 4, 7, 2, 3, 8, 1, 6, 5, 4, 7, 2, 9, 3, 8, 1, 6, 5, 4, 7, 2, 9, 10
Offset: 1
Triangle is:
{1}
{1,2}
{1,2,3}
{3,2,1}
{1,2,3,6,5,4}
{3,2,1,6,5,4}
{3,8,1,6,5,4,7,2}
{3,8,1,6,5,4,7,2,9}
{3,8,1,6,5,4,7,2,9,10}
- Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.
Cf.
A000670,
A010784,
A030299,
A050289,
A143671,
A144688,
A156069,
A156071,
A158242,
A163574,
A240763,
A305701,
A305712,
A305714 (row lengths).
-
polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
Flatten[Table[Select[Permutations[Range[n]],polyQ],{n,8}]]
Showing 1-3 of 3 results.
Comments