cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A305730 a(n) is the total displacement of all letters in all permutations of n letters with no fixed points.

Original entry on oeis.org

0, 0, 2, 8, 60, 440, 3710, 34608, 355992, 4004880, 48948570, 646121080, 9163171732, 138974771208, 2244977073430, 38485321258720, 697867158824880, 13346709412525728, 268504389357870642, 5668425997555046760, 125302048367006296940, 2894477317277845459160
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Examples

			n | 1 2 3 4 | the displacement of all letters | a(n)
--+---------+---------------------------------+------
2 | 2 1     | 1 + 1 = 2                       |   2
3 | 2 3 1   | 1 + 1 + 2 = 4                   |   8
  | 3 1 2   | 2 + 1 + 1 = 4                   |
4 | 2 1 4 3 | 1 + 1 + 1 + 1 = 4               |  60
  | 2 3 4 1 | 1 + 1 + 1 + 3 = 6               |
  | 2 4 1 3 | 1 + 2 + 2 + 1 = 6               |
  | 3 1 4 2 | 2 + 1 + 1 + 2 = 6               |
  | 3 4 1 2 | 2 + 2 + 2 + 2 = 8               |
  | 3 4 2 1 | 2 + 2 + 1 + 3 = 8               |
  | 4 1 2 3 | 3 + 1 + 1 + 1 = 6               |
  | 4 3 1 2 | 3 + 1 + 2 + 2 = 8               |
  | 4 3 2 1 | 3 + 1 + 1 + 3 = 8               |
		

Crossrefs

Programs

  • PARI
    {a(n) = n*(n+1)!/3*sum(k=0, n, (-1)^k/k!)}

Formula

a(n) = n * (n+1) * A000166(n)/3 = 2/3 * A065087(n).
a(n) = n * (n+1)!/3 * Sum_{k=0..n} (-1)^k/k!.
a(n) = n * (n+1) * (a(n-1)/(n-1) + (-1)^n/3) for n > 1.
a(n) = 2 * A000313(n+2). - Alois P. Heinz, Jun 22 2018
E.g.f.: exp(-x)*x^2*(3 - 2*x + x^2)/(3*(1 - x)^3). - Ilya Gutkovskiy, Jun 25 2018