A305762 a(0) = 24, a(n) = 2^(max(0, min(3, p - 1))) * 3^(max(0, min(1, q - 1))) where n = 2^p * 3^q * 5^r * ... .
24, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 8, 3, 1, 1, 2, 1, 1, 1, 4, 1
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A305756.
Programs
-
Mathematica
a[n_] := GCD[24, n/GCD[6, n]]; Array[a, 100, 0] (* Amiram Eldar, Oct 15 2022 *)
-
PARI
a(n)=gcd(24, n/gcd(6,n)) \\ Andrew Howroyd, Jul 24 2018
-
Ruby
require 'prime' def A305762(n) return 24 if n == 0 s = 1 s *= 3 if n % 9 == 0 n.prime_division.each{|i| s *= 2 ** [3, (i[1] - 1)].min if i[0] == 2 } s end p (0..144).map{|i| A305762(i)}
Formula
a(n+144) = a(n).
a(n) = gcd(24, n/gcd(6,n)). - Andrew Howroyd, Jul 24 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 77/36. - Amiram Eldar, Oct 15 2022
Extensions
Keyword:mult added by Andrew Howroyd, Jul 24 2018