cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A305798 Dirichlet convolution of A078898 with itself.

Original entry on oeis.org

1, 2, 2, 5, 2, 8, 2, 12, 5, 12, 2, 22, 2, 16, 8, 28, 2, 28, 2, 34, 10, 24, 2, 56, 5, 28, 14, 46, 2, 52, 2, 64, 14, 36, 8, 83, 2, 40, 16, 88, 2, 70, 2, 70, 26, 48, 2, 136, 5, 64, 20, 82, 2, 94, 10, 120, 22, 60, 2, 164, 2, 64, 34, 144, 12, 106, 2, 106, 26, 100, 2, 220, 2, 76, 36, 118, 8, 124, 2, 216, 42, 84, 2, 224, 14, 88, 32, 184, 2, 192, 10
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A305798(n) = sumdiv(n,d,A078898(d)*A078898(n/d));

Formula

a(n) = Sum_{d|n} A078898(d)*A078898(n/d).

A305791 Dirichlet convolution of A175851 with itself.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 8, 7, 10, 2, 12, 2, 6, 8, 16, 2, 14, 2, 16, 8, 10, 2, 20, 7, 10, 16, 20, 2, 22, 2, 20, 8, 10, 12, 36, 2, 6, 8, 32, 2, 18, 2, 16, 18, 10, 2, 32, 7, 22, 12, 24, 2, 30, 8, 32, 12, 14, 2, 44, 2, 6, 18, 32, 12, 30, 2, 16, 8, 30, 2, 48, 2, 6, 18, 16, 12, 30, 2, 44, 25, 10, 2, 44, 8, 10, 12, 36, 2, 54, 8, 20, 12, 14, 16, 56, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A175851(d)*A175851(n/d).

A317834 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078899 (the ordinal transform of A006530, the largest prime factor of n).

Original entry on oeis.org

1, 1, 1, 7, 1, 3, 1, 17, 11, 3, 1, 19, 1, 3, 5, 139, 1, 23, 1, 19, 5, 3, 1, 39, 19, 3, 45, 19, 1, 13, 1, 263, 5, 3, 9, 77, 1, 3, 5, 55, 1, 13, 1, 19, 43, 3, 1, 387, 27, 47, 5, 19, 1, 59, 9, 71, 5, 3, 1, 43, 1, 3, 51, 995, 9, 13, 1, 19, 5, 25, 1, 87, 1, 3, 59, 19, 13, 13, 1, 707, 467, 3, 1, 59, 9, 3, 5, 71, 1, 53, 13, 19, 5, 3, 9, 1069, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

The first negative term is a(216) = -97.

Crossrefs

Cf. A078899, A046644 (denominators).
Cf. also A305799, A317833, A317830.

Programs

  • Mathematica
    gpf[n_] := If[n == 1, 1, FactorInteger[n][[-1, 1]]];
    b[_] = 1;
    A078899[n_] := A078899[n] = With[{t = gpf[n]}, b[t]++];
    f[n_] := f[n] = If[n == 1, 1, (1/2)(A078899[n] -
         Sum[If[1Jean-François Alcover, Dec 19 2021 *)
  • PARI
    up_to = 16384;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    v078899 = ordinal_transform(vector(up_to,n,A006530(n)));
    A078899(n) = v078899[n];
    A317834aux(n) = if(1==n,n,(A078899(n)-sumdiv(n,d,if((d>1)&&(dA317834aux(d)*A317834aux(n/d),0)))/2);
    A317834(n) = numerator(A317834aux(n));

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A078899(n) - Sum_{d|n, d>1, d 1.

A305797 Dirichlet convolution of A078898 with A078899.

Original entry on oeis.org

1, 2, 2, 5, 2, 7, 2, 11, 6, 9, 2, 19, 2, 11, 8, 23, 2, 24, 2, 25, 9, 15, 2, 45, 8, 17, 17, 31, 2, 39, 2, 47, 11, 21, 10, 66, 2, 23, 12, 62, 2, 48, 2, 43, 27, 27, 2, 100, 10, 48, 14, 49, 2, 76, 11, 79, 15, 33, 2, 113, 2, 35, 32, 95, 12, 66, 2, 61, 17, 69, 2, 161, 2, 41, 37, 67, 12, 75, 2, 142, 44, 45, 2, 142, 13, 47, 20, 111, 2, 143, 13, 79, 21, 51, 14
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    v078899 = ordinal_transform(vector(up_to,n,A006530(n)));
    A078899(n) = v078899[n];
    A305797(n) = sumdiv(n,d,A078898(d)*A078899(n/d));

Formula

a(n) = Sum_{d|n} A078898(d)*A078899(n/d).
Showing 1-4 of 4 results.