cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A143112 A051731 * A032742 = sum of largest proper divisors of the divisors of n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 5, 8, 2, 14, 2, 10, 8, 16, 2, 18, 2, 20, 10, 14, 2, 30, 7, 16, 14, 26, 2, 32, 2, 32, 14, 20, 10, 44, 2, 22, 16, 44, 2, 42, 2, 38, 26, 26, 2, 62, 9, 38, 20, 44, 2, 54, 14, 58, 22, 32, 2, 80, 2, 34, 34, 64, 16, 62, 2, 56, 26, 58, 2, 96, 2, 40, 38, 62, 14, 72, 2, 92
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Jul 25 2008

Keywords

Comments

Inverse Möbius transform of A032742. - Antti Karttunen, Sep 25 2018

Examples

			a(12) = 14. The divisors of 12 are shown in row 12 of triangle A127093: (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12). The largest proper divisors of these terms are (1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6), sum = 14. Or, we can take row of triangle A051731: (1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1) dot (1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6) = (1 + 1 + 1 + 2 + 0 + 3 + 0 + 0 + 0 + 0 + 0 + 6) = 14, where A032742 = (1, 1, 1, 2, 1, 3, 1, 4, 3, 5,...).
		

Crossrefs

Programs

Formula

A051731 * A032742, where A051731 = the inverse Mobius transform and A032742 = the largest proper divisors of n: (1, 1, 1, 3, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7,...).
a(n) = Sum_{d|n} A032742(d). - Antti Karttunen, Sep 25 2018

Extensions

More terms from R. J. Mathar, Jan 19 2009

A305808 Dirichlet convolution of A032742 (the largest proper divisor of n) with itself.

Original entry on oeis.org

1, 2, 2, 5, 2, 8, 2, 12, 7, 12, 2, 22, 2, 16, 12, 28, 2, 30, 2, 34, 16, 24, 2, 56, 11, 28, 24, 46, 2, 56, 2, 64, 24, 36, 16, 87, 2, 40, 28, 88, 2, 76, 2, 70, 46, 48, 2, 136, 15, 70, 36, 82, 2, 108, 24, 120, 40, 60, 2, 172, 2, 64, 62, 144, 28, 116, 2, 106, 48, 108, 2, 228, 2, 76, 70, 118, 24, 136, 2, 216, 81, 84, 2, 236, 36, 88, 60, 184, 2, 228, 28
Offset: 1

Views

Author

Antti Karttunen, Jun 13 2018

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A032742(n/d)*A032742(d).

A334890 a(1) = 1; a(n) = -Sum_{d|n, d > 1} (sigma(d) - d) * a(n/d).

Original entry on oeis.org

1, -1, -1, -2, -1, -4, -1, -2, -3, -6, -1, -1, -1, -8, -7, 0, -1, -4, -1, -3, -9, -12, -1, 14, -5, -14, -6, -5, -1, -2, -1, 4, -13, -18, -11, 28, -1, -20, -15, 18, -1, -6, -1, -9, -10, -24, -1, 36, -7, -18, -19, -11, -1, 12, -15, 22, -21, -30, -1, 85, -1, -32, -14, 8, -17
Offset: 1

Views

Author

Ilya Gutkovskiy, May 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, -Sum[If[d > 1, (DivisorSigma[1, d] - d) a[n/d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 65}]
  • PARI
    lista(nn) = {my(va=vector(nn)); va[1] = 1; for (n=2, nn, va[n] =  -sumdiv(n, d, if (d>1, (sigma(d) - d) * va[n/d]));); va;} \\ Michel Marcus, May 15 2020

Formula

G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} A001065(k) * A(x^k).
Dirichlet g.f.: 1 / (1 + zeta(s-1) * (zeta(s) - 1)).
Showing 1-3 of 3 results.