A305859 Numbers that are congruent to {1, 3, 11} mod 12.
1, 3, 11, 13, 15, 23, 25, 27, 35, 37, 39, 47, 49, 51, 59, 61, 63, 71, 73, 75, 83, 85, 87, 95, 97, 99, 107, 109, 111, 119, 121, 123, 131, 133, 135, 143, 145, 147, 155, 157, 159, 167, 169, 171, 179, 181, 183, 191, 193, 195, 203, 205, 207, 215, 217, 219, 227, 229, 231, 239
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n: n in [0..300] | n mod 12 in [1,3,11]]; // Bruno Berselli, Jun 13 2018
-
Mathematica
Table[2 n + 6 Floor[n/3] - 1, {n, 1, 60}] (* Bruno Berselli, Jun 13 2018 *) LinearRecurrence[{1,0,1,-1},{1,3,11,13},60] (* Harvey P. Dale, Mar 15 2023 *)
Formula
G.f.: x*(1 + 2*x + 8*x^2 + x^3)/((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>12.
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = 2*n + 6*floor(n/3) - 1. - Bruno Berselli, Jun 13 2018
Extensions
Edited by Bruno Berselli, Jun 13 2018