A305861 a(n) = 32*3^n - 2^(n+5) + 5.
5, 37, 165, 613, 2085, 6757, 21285, 65893, 201765, 613477, 1856805, 5603173, 16875045, 50756197, 152530725, 458116453, 1375397925, 4128290917, 12389067045, 37175589733, 111543546405, 334664193637, 1004059689765, 3012313287013, 9037208296485, 27112161760357
Offset: 0
Links
- Takao Komatsu, On poly-Euler numbers of the second kind, arXiv:1806.05515 [math.NT], 2018, page 11 (Lemma 3.4).
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Cf. A000918.
Programs
-
Magma
[32*3^n-2^(n+5)+5: n in [0..30]];
-
Mathematica
Table[32 3^n - 2^(n + 5) + 5, {n, 0, 30}]
-
PARI
a(n) = 32*3^n - 2^(n+5) + 5; \\ Michel Marcus, Jul 03 2018
Formula
G.f.: (5 + 7*x - 2*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).