A306020 a(n) is the number of set-systems using nonempty subsets of {1,...,n} in which all sets have the same size.
1, 2, 5, 16, 95, 2110, 1114237, 68723671292, 1180735735906024030715, 170141183460507917357914971986913657850, 7237005577335553223087828975127304179197147198604070555943173844710572689401
Offset: 0
Keywords
Examples
a(3) = 16 set-systems in which all sets have the same size: {} {{1}} {{2}} {{3}} {{1,2}} {{1,3}} {{2,3}} {{1,2,3}} {{1},{2}} {{1},{3}} {{2},{3}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1},{2},{3}} {{1,2},{1,3},{2,3}}
Crossrefs
Programs
-
Maple
a := n -> 1-n+add(2^binomial(n, d), d = 1 .. n): seq(a(n), n = 0 .. 10); # Lorenzo Sauras Altuzarra, Aug 11 2023
-
Mathematica
Table[1+Sum[2^Binomial[n,d]-1,{d,n}],{n,10}]
-
PARI
a(n) = 1 - n + sum(d = 1, n, 2^binomial(n, d)); \\ Michel Marcus, Aug 10 2023
Formula
a(n) = 1 - n + Sum_{d = 1..n} 2^binomial(n, d).
Comments