A306017 Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.
1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(4) = 17 multiset partitions: {{1,1,1,1}} {{1,1,2,2}} {{1,2,2,2}} {{1,2,3,3}} {{1,2,3,4}} {{1,1},{1,1}} {{1,1},{2,2}} {{1,2},{1,2}} {{1,2},{2,2}} {{1,2},{3,3}} {{1,2},{3,4}} {{1,3},{2,3}} {{1},{1},{1},{1}} {{1},{1},{2},{2}} {{1},{2},{2},{2}} {{1},{2},{3},{3}} {{1},{2},{3},{4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Mathematica
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}]; RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!]; a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
-
PARI
\\ See A318951 for RowSumMats. a(n)={sumdiv(n,d,RowSumMats(n/d,n,d))} \\ Andrew Howroyd, Sep 05 2018
Formula
For p prime, a(p) = 2*A000041(p).
a(n) = Sum_{d|n} A331485(n/d, d). - Andrew Howroyd, Feb 09 2020
Extensions
Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018
Comments