A306200 Number of unlabeled rooted semi-identity trees with n nodes.
0, 1, 1, 2, 4, 8, 18, 41, 98, 237, 591, 1488, 3805, 9820, 25593, 67184, 177604, 472177, 1261998, 3388434, 9136019, 24724904, 67141940, 182892368, 499608724, 1368340326, 3756651116, 10336434585, 28499309291, 78727891420, 217870037932, 603934911859, 1676720329410
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 8 trees: o (o) (oo) (ooo) (oooo) (ooooo) ((o)) ((oo)) ((ooo)) ((oooo)) (o(o)) (o(oo)) (o(ooo)) (((o))) (oo(o)) (oo(oo)) (((oo))) (ooo(o)) ((o(o))) (((ooo))) (o((o))) ((o)(oo)) ((((o)))) ((o(oo))) ((oo(o))) (o((oo))) (o(o(o))) (oo((o))) ((((oo)))) (((o(o)))) ((o)((o))) ((o((o)))) (o(((o)))) (((((o)))))
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2166
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i)) end: a:= n-> `if`(n=0, 0, b(n-1$2)): seq(a(n), n=0..35); # Alois P. Heinz, Jan 29 2019
-
Mathematica
ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}]; Table[Length[ursit[n]],{n,10}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]]; a[n_] := If[n == 0, 0, b[n - 1, n - 1]]; a /@ Range[0, 35] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jan 29 2019
Comments