cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306200 Number of unlabeled rooted semi-identity trees with n nodes.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 18, 41, 98, 237, 591, 1488, 3805, 9820, 25593, 67184, 177604, 472177, 1261998, 3388434, 9136019, 24724904, 67141940, 182892368, 499608724, 1368340326, 3756651116, 10336434585, 28499309291, 78727891420, 217870037932, 603934911859, 1676720329410
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2019

Keywords

Comments

A rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(7) = 8 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o(o)))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((o(oo)))
                                     ((oo(o)))
                                     (o((oo)))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o(o))))
                                     ((o)((o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 0, b(n-1$2)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 29 2019
  • Mathematica
    ursit[n_]:=Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@DeleteCases[#,{}]&],{ptn,IntegerPartitions[n-1]}];
    Table[Length[ursit[n]],{n,10}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1,
         Sum[b[n - i*j, i - 1]*Binomial[a[i], j], {j, 0, n/i}]];
    a[n_] := If[n == 0, 0, b[n - 1, n - 1]];
    a /@ Range[0, 35] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jan 29 2019