cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306264 a(n) = 1 + d*a(n/d); a(1)=0. If n has only one prime divisor, then d=n, otherwise d is the greatest proper unitary divisor of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 5, 1, 8, 6, 1, 1, 10, 1, 6, 8, 12, 1, 9, 1, 14, 1, 8, 1, 16, 1, 1, 12, 18, 8, 10, 1, 20, 14, 9, 1, 22, 1, 12, 10, 24, 1, 17, 1, 26, 18, 14, 1, 28, 12, 9, 20, 30, 1, 21, 1, 32, 10, 1, 14, 34, 1, 18, 24, 36, 1, 10, 1, 38, 26, 20, 12, 40, 1, 17
Offset: 1

Views

Author

David James Sycamore, Feb 01 2019

Keywords

Comments

Name related to recursive formula of A006022.
a(n) = 1 if and only if n is a prime power; p^t; t >= 1.
The sequence of indices k on which a(k) is a record (1,2,6,10,14,18,22,26,30,...), appears to be A111284.

Examples

			a(8) = a(25) = 1 because 8 and 25 are prime powers.
a(30) = 16 because 15 is the greatest proper unitary divisor of 30, so a(30) = 1 + 15*a(2) = 1 + 15 = 16.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := If[PrimePowerQ[n], n,
      SelectFirst[Transpose@
        {Reverse@ #[[-Ceiling[Length[#]/2] ;; -2]],
          #[[2 ;; Ceiling[Length[#]/2]]]} &@ Divisors[n],
        CoprimeQ @@ # &][[1]] ]; f[1] = 1;
    a[n_] := 1 + #*a[n/#] &[f[n]]; a[1] = 0;
    Array[a, 120] (* Michael De Vlieger, Jun 24 2025 *)
  • PARI
    d(n) = if (omega(n) == 1, n, my(v=select(x->(gcd(x, n/x)==1), divisors(n))); v[#v-1]);
    lista(nn) = {va = vector(nn); va[1] = 0; for (n=2, nn, dn = d(n); va[n] = 1 + dn*va[n/dn];); va;} \\ Michel Marcus, Feb 10 2019
    
  • PARI
    A324388(n) = if(1>=omega(n),n,fordiv(n,d,if((d>1)&&(1==gcd(d,n/d)),return(n/d))));
    A306264(n) = if(1==n,0,my(d=A324388(n)); 1+(d*A306264(n/d))); \\ Antti Karttunen, Feb 28 2019

Formula

a(1) = 0; for n > 1, a(n) = 1 + (A324388(n) * a(n/A324388(n))). - Antti Karttunen, Feb 28 2019