A306264 a(n) = 1 + d*a(n/d); a(1)=0. If n has only one prime divisor, then d=n, otherwise d is the greatest proper unitary divisor of n.
0, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 5, 1, 8, 6, 1, 1, 10, 1, 6, 8, 12, 1, 9, 1, 14, 1, 8, 1, 16, 1, 1, 12, 18, 8, 10, 1, 20, 14, 9, 1, 22, 1, 12, 10, 24, 1, 17, 1, 26, 18, 14, 1, 28, 12, 9, 20, 30, 1, 21, 1, 32, 10, 1, 14, 34, 1, 18, 24, 36, 1, 10, 1, 38, 26, 20, 12, 40, 1, 17
Offset: 1
Keywords
Examples
a(8) = a(25) = 1 because 8 and 25 are prime powers. a(30) = 16 because 15 is the greatest proper unitary divisor of 30, so a(30) = 1 + 15*a(2) = 1 + 15 = 16.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Programs
-
Mathematica
f[n_] := If[PrimePowerQ[n], n, SelectFirst[Transpose@ {Reverse@ #[[-Ceiling[Length[#]/2] ;; -2]], #[[2 ;; Ceiling[Length[#]/2]]]} &@ Divisors[n], CoprimeQ @@ # &][[1]] ]; f[1] = 1; a[n_] := 1 + #*a[n/#] &[f[n]]; a[1] = 0; Array[a, 120] (* Michael De Vlieger, Jun 24 2025 *)
-
PARI
d(n) = if (omega(n) == 1, n, my(v=select(x->(gcd(x, n/x)==1), divisors(n))); v[#v-1]); lista(nn) = {va = vector(nn); va[1] = 0; for (n=2, nn, dn = d(n); va[n] = 1 + dn*va[n/dn];); va;} \\ Michel Marcus, Feb 10 2019
-
PARI
A324388(n) = if(1>=omega(n),n,fordiv(n,d,if((d>1)&&(1==gcd(d,n/d)),return(n/d)))); A306264(n) = if(1==n,0,my(d=A324388(n)); 1+(d*A306264(n/d))); \\ Antti Karttunen, Feb 28 2019
Comments