A306277 Numbers congruent to 1 or 8 mod 10.
1, 8, 11, 18, 21, 28, 31, 38, 41, 48, 51, 58, 61, 68, 71, 78, 81, 88, 91, 98, 101, 108, 111, 118, 121, 128, 131, 138, 141, 148, 151, 158, 161, 168, 171, 178, 181, 188, 191, 198, 201, 208, 211, 218, 221, 228, 231, 238, 241, 248, 251, 258, 261, 268, 271, 278, 281, 288, 291, 298, 301, 308, 311, 318, 321
Offset: 1
Links
- Davis Smith, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Maple
seq(seq(10*i+j, j=[1, 8]), i=0..350);
-
Mathematica
Select[Range[350], MemberQ[{1, 8}, Mod[#, 10]] &]
-
PARI
for(n=1, 350, if((n%10==1) || (n%10==8), print1(n, ", ")))
-
PARI
Vec(x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019
Formula
a(n) = 5*n - 2*A000034(n+1).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = A273669(n) - 1. - Antti Karttunen, Feb 07 2019
G.f.: x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
E.g.f.: 2 + (5*x - 3)*exp(x) + exp(-x). - David Lovler, Sep 07 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (5+sqrt(5))^(3/2)*phi*Pi/(100*sqrt(2)) + log(phi)/(2*sqrt(5)) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023
Comments