cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306277 Numbers congruent to 1 or 8 mod 10.

Original entry on oeis.org

1, 8, 11, 18, 21, 28, 31, 38, 41, 48, 51, 58, 61, 68, 71, 78, 81, 88, 91, 98, 101, 108, 111, 118, 121, 128, 131, 138, 141, 148, 151, 158, 161, 168, 171, 178, 181, 188, 191, 198, 201, 208, 211, 218, 221, 228, 231, 238, 241, 248, 251, 258, 261, 268, 271, 278, 281, 288, 291, 298, 301, 308, 311, 318, 321
Offset: 1

Views

Author

Davis Smith, Feb 02 2019

Keywords

Comments

A007310(a(n)+1) is always a multiple of 5.
a(1) = 1, a(n+1) = a(n)+7 when n is odd, a(n+1) = a(n)+3 when n is even.
a(n) mod 6 follows the following pattern: 1,2,5,0,3,4,1,2,5,0,3,4, and so on.
A020639(A007310(a(n)+1)) = 5.

Crossrefs

Cf. A017281, A017365 (bisections).
One less than A273669.

Programs

  • Maple
    seq(seq(10*i+j, j=[1, 8]), i=0..350);
  • Mathematica
    Select[Range[350], MemberQ[{1, 8}, Mod[#, 10]] &]
  • PARI
    for(n=1, 350, if((n%10==1) || (n%10==8), print1(n, ", ")))
    
  • PARI
    Vec(x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019

Formula

a(n) = 5*n - 2*A000034(n+1).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = A273669(n) - 1. - Antti Karttunen, Feb 07 2019
G.f.: x*(1 + 7*x + 2*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
E.g.f.: 2 + (5*x - 3)*exp(x) + exp(-x). - David Lovler, Sep 07 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = (5+sqrt(5))^(3/2)*phi*Pi/(100*sqrt(2)) + log(phi)/(2*sqrt(5)) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 15 2023