cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306285 Numbers congruent to 4 or 21 mod 26.

Original entry on oeis.org

4, 21, 30, 47, 56, 73, 82, 99, 108, 125, 134, 151, 160, 177, 186, 203, 212, 229, 238, 255, 264, 281, 290, 307, 316, 333, 342, 359, 368, 385, 394, 411, 420, 437, 446, 463, 472, 489, 498, 515, 524, 541, 550, 567, 576, 593, 602, 619, 628, 645, 654, 671, 680, 697, 706, 723, 732, 749, 758, 775, 784, 801, 810, 827, 836, 853, 862
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

A007310(a(n)+1) is always a multiple of 13.
a(n) mod 6 follows the following pattern: 4,3,0,5,2,1,4,3,0,5,2,1 and so on.
a(n) mod 4 = A010873(n).
A020639(A007310(a(n)+1)) = 5 when n is congruent to 2 or 9 (mod 10) (n is a term in A273669). It equals 7 when n is congruent to 3 or 12 (mod 14) but not congruent to 2 or 9 (mod 10). It equals 11 when n is congruent to 4 or 19 (mod 22) but not congruent to 2 or 9 (mod 10) and not congruent to 3 or 12 (mod 14). Otherwise, it is 13.

Crossrefs

Programs

  • Maple
    seq(seq(26*i+j, j=[4, 21]), i=0..200);
  • Mathematica
    Select[Range[200], MemberQ[{4, 21}, Mod[#, 26]] &]
  • PARI
    for(n=1, 1000, if((n%26==4) || (n%26==21), print1(n, ", ")))
    
  • PARI
    Vec(x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 08 2019

Formula

a(n) = 13*n - A010720(n+1).
From Colin Barker, Feb 08 2019: (Start)
G.f.: x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = 13*n - 5 for n even.
a(n) = 13*n - 9 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 5 + (13*x - 7)*exp(x) + 2*exp(-x). - David Lovler, Sep 09 2022