A306285 Numbers congruent to 4 or 21 mod 26.
4, 21, 30, 47, 56, 73, 82, 99, 108, 125, 134, 151, 160, 177, 186, 203, 212, 229, 238, 255, 264, 281, 290, 307, 316, 333, 342, 359, 368, 385, 394, 411, 420, 437, 446, 463, 472, 489, 498, 515, 524, 541, 550, 567, 576, 593, 602, 619, 628, 645, 654, 671, 680, 697, 706, 723, 732, 749, 758, 775, 784, 801, 810, 827, 836, 853, 862
Offset: 1
Links
- Davis Smith, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
seq(seq(26*i+j, j=[4, 21]), i=0..200);
-
Mathematica
Select[Range[200], MemberQ[{4, 21}, Mod[#, 26]] &]
-
PARI
for(n=1, 1000, if((n%26==4) || (n%26==21), print1(n, ", ")))
-
PARI
Vec(x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 08 2019
Formula
a(n) = 13*n - A010720(n+1).
From Colin Barker, Feb 08 2019: (Start)
G.f.: x*(4 + 17*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = 13*n - 5 for n even.
a(n) = 13*n - 9 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
E.g.f.: 5 + (13*x - 7)*exp(x) + 2*exp(-x). - David Lovler, Sep 09 2022
Comments