A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.
5, 7, 11, 13, 17, 19, 23, 5, 29, 31, 5, 37, 41, 43, 47, 7, 53, 5, 59, 61, 5, 67, 71, 73, 7, 79, 83, 5, 89, 7, 5, 97, 101, 103, 107, 109, 113, 5, 7, 11, 5, 127, 131, 7, 137, 139, 11, 5, 149, 151, 5, 157, 7, 163, 167, 13, 173, 5, 179, 181, 5, 11, 191, 193
Offset: 1
Keywords
Examples
a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0. Table begins \m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... n\ 1| 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 2| 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 3| 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 ... 4| 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 ... 5| 0 0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 ... 6| 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 ... 7| 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 ... 8| 5 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 ... 9| 0 0 0 0 0 0 0 0 29 0 0 0 0 0 0 0 ... 10| 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 0 ... 11| 5 7 0 0 0 0 0 0 0 0 35 0 0 0 0 0 ... 12| 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 ... 13| 0 0 0 0 0 0 0 0 0 0 0 0 41 0 0 0 ... 14| 0 0 0 0 0 0 0 0 0 0 0 0 0 43 0 0 ... 15| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 47 0 ... 16| 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 49 ... For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.
Links
- Davis Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;
-
Mathematica
FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* Michael De Vlieger, Feb 15 2019 *) FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* Harvey P. Dale, Jul 10 2020 *)
-
PARI
for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))
-
PARI
vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])
-
PARI
a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ Michel Marcus, Feb 06 2019
Comments