A306322 Number of n X n integer matrices (m_{i,j}) such that m_{1,1}=0, m_{n,n}=2, and all rows, columns, and falling diagonals are (weakly) monotonic without jumps of 2.
1, 0, 0, 25, 386, 4657, 54219, 642815, 7852836, 98755951, 1273299491, 16761968919, 224508932229, 3051075581019, 41979207169125, 583745779595077, 8192478969914858, 115908383594664493, 1651636256584103013, 23685002515500875105, 341589590792856093329
Offset: 0
Keywords
Links
- Manuel Kauers and Christoph Koutschan, Table of n, a(n) for n = 0..836 (terms 0..40 from Alois P. Heinz).
- M. Kauers and C. Koutschan, Some D-finite and some possibly D-finite sequences in the OEIS, arXiv:2303.02793 [cs.SC], 2023.
Programs
-
Mathematica
Nara[i_, j_] := 1/(i+j-1)*Binomial[i+j-1, i]*Binomial[i+j-1, i-1]; Prepend[Table[2*Sum[Sum[Nara[i, j], {i, n}] + (n-j-1)*Nara[j, n], {j, n}] - 2*Binomial[2*n, n] + Nara[n, n] + 3, {n, 100}], 1] (* Manuel Kauers and Christoph Koutschan, Mar 02 2023 *)
Formula
From Manuel Kauers and Christoph Koutschan, Mar 02 2023: (Start)
a(n) = 2*Sum_{j=1..n} (Sum_{i=1..n} N'(i, j) + (n-j-1)*N'(j, n)) - 2*binomial(2*n, n) + N'(n, n) + 3 for n>0, where N'(n, k) = (binomial(n+k-1, n-1)*binomial(n+k-1, n))/(n+k-1) denotes the Narayana number N(n+k-1, k).
Recurrence: -2*(n+3)*(n+4)^2*(2*n+7)*(118125*n^10 + 1308375*n^9 + 6016950*n^8 + 14827410*n^7 + 20875365*n^6 + 15986367*n^5 + 4449768*n^4 - 2342808*n^3 - 2279152*n^2 - 660240*n - 64000)*a(n+4) + (n+3)*(10040625*n^13 + 210555000*n^12 + 1942194375*n^11 + 10361592450*n^10 + 35325144315*n^9 + 80085358620*n^8 + 121180651809*n^7 + 117919810482*n^6 + 64349576684*n^5 + 7017979960*n^4 - 14571577344*n^3 - 9566235392*n^2 - 2428639744*n - 221347840)*a(n+3) + (-42170625*n^14 - 981642375*n^13 - 10209053025*n^12 - 62559627795*n^11 - 250621464735*n^10 - 687475711989*n^9 - 1311094658043*n^8 - 1718884004625*n^7 - 1471227292164*n^6 - 691541238960*n^5 - 14462120192*n^4 + 188403075920*n^3 + 108128100864*n^2 + 25779317504*n + 2257059840)*a(n+2) + 2*(2*n+3)*(10040625*n^13 + 215870625*n^12 + 2048259375*n^11 + 11279217825*n^10 + 39828085965*n^9 + 93825035775*n^8 + 147951032109*n^7 + 150478534491*n^6 + 86482913102*n^5 + 11547320420*n^4 - 18788310824*n^3 - 12713618176*n^2 - 3178474112*n - 272670720)*a(n+1) - 8*n*(2*n-1)*(2*n+1)*(2*n+3)*(118125*n^10 + 2489625*n^9 + 23107950*n^8 + 124239510*n^7 + 427851585*n^6 + 984186117*n^5 + 1527319428*n^4 + 1572814284*n^3 + 1022652512*n^2 + 375620224*n + 58236160)*a(n) = 0. (End)
a(n) ~ 25 * 2^(4*n - 3) / (9*Pi*n^2) . - Vaclav Kotesovec, Mar 08 2023