A306331 Numbers congruent to 6 or 31 mod 38.
6, 31, 44, 69, 82, 107, 120, 145, 158, 183, 196, 221, 234, 259, 272, 297, 310, 335, 348, 373, 386, 411, 424, 449, 462, 487, 500, 525, 538, 563, 576, 601, 614, 639, 652, 677, 690, 715, 728, 753, 766, 791, 804, 829, 842, 867, 880, 905
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
seq(seq(38*i+j, j=[6, 31]), i=0..200);
-
Mathematica
Select[Range[200], MemberQ[{6, 31}, Mod[#, 38]] &] Union[38Range[30] - 32, 38Range[30] - 7] (* Alonso del Arte, Feb 08 2019 *)
-
PARI
for(n=6, 905, if((n%38==6) || (n%38==31), print1(n, ", ")))
-
PARI
Vec(x*(6 + 25*x + 7*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 09 2019
-
Scala
(6 to 1108 by 38).union(31 to 1133 by 38).sorted // Alonso del Arte, Feb 08 2019
Formula
G.f.: x*(6 + 25*x + 7*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Feb 09 2019
a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3.
a(n) = 19*n - 10 + 3*(-1)^n. - Wesley Ivan Hurt, Mar 10 2019
a(n) = 19*n - 13 when n is odd and 19*n - 7 when n is even.
a(n) = 19*n - (A040031(n + 1) + 1).
E.g.f.: 7 + (19*x - 10)*exp(x) + 3*exp(-x). - David Lovler, Sep 10 2022
Comments