A306345 Absolute difference between the number of prime divisors and the number of composite divisors of n.
0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 0, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 5, 1, 1, 1, 3
Offset: 1
Keywords
Examples
For n = 24: The set of divisors of 24 is {1, 2, 3, 4, 6, 8, 12, 24}. The prime divisors are {2, 3} and the composite divisors are {4, 6, 8, 12, 24}. The cardinalities of the sets are 2 and 5, respectively, and abs(2-5) = 3, so a(24) = 3.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Array[Abs[2 PrimeNu@ # - DivisorSigma[0, #] + 1] &, 105] (* Michael De Vlieger, Feb 17 2019 *)
-
PARI
a(n) = my(d=divisors(n), p=0, c=0); for(k=2, #d, if(ispseudoprime(d[k]), p++, c++)); abs(p-c)
-
PARI
a(n) = abs(2*omega(n) - numdiv(n) + 1); \\ Michel Marcus, Feb 12 2019
Formula
Extensions
a(1)=0 prepended by David A. Corneth, Feb 12 2019
Comments