cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306360 Numbers k such that A101337(k)/k is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 459, 1634, 8208, 9474, 13598, 48495, 54748, 92727, 93084, 119564, 174961, 306979, 548834, 1741725, 3194922, 4210818, 9800817, 9926315, 12720569, 24678050, 24678051, 88593477, 144688641, 146511208
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 10 2019

Keywords

Comments

A005188 is a subsequence of this sequence.
Sequence is finite. In particular, a(n) < 10^60. If k >= 10^60, then A101337(k) < k. - Chai Wah Wu, Feb 26 2019

Examples

			For k = 1, (1^1)/1 = 1;
for k = 459, (4^3 + 5^3 + 9^3) / 459 = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], IntegerQ[Total[IntegerDigits[#]^IntegerLength[#]]/#] &] (* Michael De Vlieger, Aug 01 2019 *)
  • PARI
    isok(n) = frac(A101337(n)/n) == 0; \\ Michel Marcus, Feb 11 2019
    
  • PARI
    select( is(n)=!(A101337(n)%n), [0..999]) \\ M. F. Hasler, Nov 17 2019
    
  • Python
    A306360_list, k = [], 1
    while k < 10**9:
        s = str(k)
        l, c = len(s), 0
        for i in range(l):
            c = (c + int(s[i])**l) % k
        if c == 0:
            A306360_list.append(k)
        k += 1 # Chai Wah Wu, Feb 26 2019

Extensions

a(22)-a(37) from Daniel Suteu, Feb 10 2019

A306354 a(n) = gcd(n, A101337(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 12, 1, 2, 9, 4, 1, 6, 1, 4, 3, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 9
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 09 2019

Keywords

Comments

A101337(n) / n = r, r an integer, gives A306360. A101337(n) / n = 1 gives A005188. n / A101337(n) = s, s an integer, gives A306361. The motivation for this sequence was the question as to which numbers n have the property A101337(n) / n = r and the property n / A101337(n) = s?

Examples

			For n = 24, a(24) = gcd(24, 2*2 + 4*4) = gcd(24,20) = 4, thus a(24) = 4;
for n = 153, a(153) = gcd(153, 1*1*1 + 5*5*5 + 3*3*3) = gcd(153,153) = 153, thus a(153) = 153.
		

Crossrefs

Programs

  • Mathematica
    Array[GCD[#1, Total[#2^Length[#2]]] & @@ {#, IntegerDigits@ #} &, 90] (* Michael De Vlieger, Feb 09 2019 *)
  • PARI
    a(n) = my(d=digits(n)); gcd(n, sum(i=1, #d, d[i]^#d)); \\ Michel Marcus, Feb 12 2019
    
  • Python
    from math import gcd
    def A306354(n): return gcd(n,sum(int(d)**len(str(n)) for d in str(n))) # Chai Wah Wu, Jan 26 2022

A334601 Positive integers m such that sum of cubes of the digits of m, t=A055012(m), is a multiple of m (m/A055012(m) is an integer >= 1).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 27, 37, 48, 153, 370, 371, 407, 459
Offset: 1

Views

Author

Zak Seidov, May 07 2020 and May 12 2020

Keywords

Comments

Corresponding values of t: 1, 8, 27, 64, 125, 216, 343, 512, 729, 72, 351, 370, 576, 153, 370, 371, 407, 918 (first 9 terms are all cubes).
Corresponding values of t/m: 1, 4, 9, 16, 25, 36, 49, 64, 81, 3, 13, 10, 12, 1, 1, 1, 1, 2 (first 9 terms are all squares).
The subsequence of numbers m such that sum of cubes of its digits is equal to m is A046197 \ {0}. - Bernard Schott, May 11 2020

Examples

			m = 459, t = 4^3 + 5^3 + 9^3 = 918, t/m = 2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500], Divisible[Plus @@ (IntegerDigits[#]^3), #] &] (* Amiram Eldar, May 11 2020 *)
  • PARI
    isok(m) = my(d=digits(m)); sum(k=1, #d, d[k]^3) % m == 0; \\ Michel Marcus, May 14 2020
Showing 1-3 of 3 results.