A306387 Number of partitions of sigma(n) into divisors of n, where sigma = A000203.
1, 2, 2, 6, 2, 27, 2, 26, 7, 31, 2, 574, 2, 38, 33, 166, 2, 879, 2, 924, 39, 52, 2, 23732, 9, 59, 47, 1403, 2, 34256, 2, 1626, 55, 73, 47, 230819, 2, 80, 61, 50888, 2, 65638, 2, 2709, 1734, 94, 2, 2117920, 11, 3038, 77, 3536, 2, 113448, 65, 97298, 83, 115, 2, 92531888, 2, 122, 2601, 25510, 73, 180350
Offset: 1
Keywords
Examples
For n = 4, sigma(4) = 7, divisors(4) = {1,2,4} and 7 = 4+2+1 = 4+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1. For n = 9, sigma(9) = 13, divisors(9) = {1,3,9} and 13 = 9+3+1 = 9+1+1+1+1 = 3+3+3+3+1 = 3+3+3+1+1+1+1 = 3+3+1+1+1+1+1+1+1 = 3+1+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1.
Links
Programs
-
Magma
v:=[1..47]; for u in v do u, #RestrictedPartitions(SumOfDivisors(u),{d:d in Divisors(u)}); end for;
-
Magma
a:= func< n | #RestrictedPartitions(SumOfDivisors(n),{d:d in Divisors(n)}) >; [ a(n) : n in [1..47] ];
-
PARI
numbpartUsing(n, v, mx=#v)=if(n<1, return(n==0)); sum(i=1, mx, numbpartUsing(n-v[i], v, i)) \\ inefficient; a(n) = numbpartUsing(sigma(n), divisors(n)); \\ after A018818; Michel Marcus, Feb 27 2019
-
PARI
A306387(n) = { my(p=1, s=sigma(n)); fordiv(n, d, p /= (1 - 'x^d)); polcoeff(Ser(p,'x,1+s), s); }; \\ Antti Karttunen, Jan 22 2025
Extensions
Term a(60) corrected from 19613170 to 92531888 by Antti Karttunen, Jan 22 2025
Comments