cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306387 Number of partitions of sigma(n) into divisors of n, where sigma = A000203.

Original entry on oeis.org

1, 2, 2, 6, 2, 27, 2, 26, 7, 31, 2, 574, 2, 38, 33, 166, 2, 879, 2, 924, 39, 52, 2, 23732, 9, 59, 47, 1403, 2, 34256, 2, 1626, 55, 73, 47, 230819, 2, 80, 61, 50888, 2, 65638, 2, 2709, 1734, 94, 2, 2117920, 11, 3038, 77, 3536, 2, 113448, 65, 97298, 83, 115, 2, 92531888, 2, 122, 2601, 25510, 73, 180350
Offset: 1

Views

Author

Marius A. Burtea, Feb 26 2019

Keywords

Comments

The equality sigma(n) = Sum{d|n} d defines unique partition of sigma(n) into distinct divisors of n. This sequence gives the number of partitions of sigma(n) into not necessarily distinct divisors of n.
For prime number p, sigma(p) = p+1 and there are only two partitions: p and 1+1+1+...+1 (p summands).

Examples

			For n = 4, sigma(4) = 7, divisors(4) = {1,2,4} and 7 = 4+2+1 = 4+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1.
For n = 9, sigma(9) = 13, divisors(9) = {1,3,9} and 13 = 9+3+1 = 9+1+1+1+1 = 3+3+3+3+1 = 3+3+3+1+1+1+1 = 3+3+1+1+1+1+1+1+1 = 3+1+1+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1+1+1+1.
		

Crossrefs

Programs

  • Magma
    v:=[1..47];
    for u in v do
    u, #RestrictedPartitions(SumOfDivisors(u),{d:d in Divisors(u)});
    end for;
    
  • Magma
    a:= func< n | #RestrictedPartitions(SumOfDivisors(n),{d:d in Divisors(n)}) >; [ a(n) : n in [1..47] ];
    
  • PARI
    numbpartUsing(n, v, mx=#v)=if(n<1, return(n==0)); sum(i=1, mx, numbpartUsing(n-v[i], v, i)) \\ inefficient;
    a(n) = numbpartUsing(sigma(n), divisors(n)); \\ after A018818; Michel Marcus, Feb 27 2019
    
  • PARI
    A306387(n) = { my(p=1, s=sigma(n)); fordiv(n, d, p /= (1 - 'x^d)); polcoeff(Ser(p,'x,1+s), s); }; \\ Antti Karttunen, Jan 22 2025

Extensions

Term a(60) corrected from 19613170 to 92531888 by Antti Karttunen, Jan 22 2025