cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306419 Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i.

Original entry on oeis.org

1, 1, 1, 1, 4, 11, 32, 99, 326, 1123, 4064, 15291, 59924, 242945, 1019584, 4409233, 19648674, 89938705, 422744384, 2035739041, 10039057524, 50610247483, 260704414816, 1370387233859, 7346982653702, 40131663286851, 223238920709024, 1263531826402891, 7273434344119460
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2019

Keywords

Comments

Also the number of spanning subgraphs of the complement of an n-cycle, with no overlapping edges.
I.e., for n >= 3, also the number of matchings in the complement of the cycle graph C_n. - Eric W. Weisstein, Sep 02 2025

Examples

			The a(1) = 1 through a(5) = 11 set partitions:
  {{1}}  {{1}{2}}  {{1}{2}{3}}  {{13}{24}}      {{1}{24}{35}}
                                {{1}{24}{3}}    {{13}{24}{5}}
                                {{13}{2}{4}}    {{13}{25}{4}}
                                {{1}{2}{3}{4}}  {{14}{2}{35}}
                                                {{14}{25}{3}}
                                                {{1}{2}{35}{4}}
                                                {{1}{24}{3}{5}}
                                                {{1}{25}{3}{4}}
                                                {{13}{2}{4}{5}}
                                                {{14}{2}{3}{5}}
                                                {{1}{2}{3}{4}{5}}
		

Crossrefs

Cf. A000085, A000110, A000296, A001006, A001610, A003436 (no singletons), A034807, A170941 (linear case), A278990 (linear case with no singletons), A306417.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}]
    (* Second program: *)
    CompoundExpression[
      b[n_] := I^(1 - n) 2^((n - 1)/2) HypergeometricU[(1 - n)/2, 3/2, -1/2],
      Join[{1, 1, 1}, Table[Sum[(-1)^k b[n - 2 k] n (n - 1 - k)!/(k! (n - 2 k)!), {k, 0, n/2}], {n, 3, 20}]]
    ] (* Eric W. Weisstein, Sep 02 2025 *)
  • PARI
    \\ here b(n) is A000085(n)
    b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))}
    a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ Andrew Howroyd, Aug 30 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} (-1)^k*A034807(n, k)*A000085(n-2*k) for n > 2. - Andrew Howroyd, Aug 30 2019

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019