A306419 Number of set partitions of {1, ..., n} whose blocks are all singletons and pairs, not including {1, n} or {i, i + 1} for any i.
1, 1, 1, 1, 4, 11, 32, 99, 326, 1123, 4064, 15291, 59924, 242945, 1019584, 4409233, 19648674, 89938705, 422744384, 2035739041, 10039057524, 50610247483, 260704414816, 1370387233859, 7346982653702, 40131663286851, 223238920709024, 1263531826402891, 7273434344119460
Offset: 0
Examples
The a(1) = 1 through a(5) = 11 set partitions: {{1}} {{1}{2}} {{1}{2}{3}} {{13}{24}} {{1}{24}{35}} {{1}{24}{3}} {{13}{24}{5}} {{13}{2}{4}} {{13}{25}{4}} {{1}{2}{3}{4}} {{14}{2}{35}} {{14}{25}{3}} {{1}{2}{35}{4}} {{1}{24}{3}{5}} {{1}{25}{3}{4}} {{13}{2}{4}{5}} {{14}{2}{3}{5}} {{1}{2}{3}{4}{5}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]]; Table[Length[stableSets[Complement[Subsets[Range[n],{2}],Sort/@Partition[Range[n],2,1,1]],Intersection[#1,#2]!={}&]],{n,0,10}] (* Second program: *) CompoundExpression[ b[n_] := I^(1 - n) 2^((n - 1)/2) HypergeometricU[(1 - n)/2, 3/2, -1/2], Join[{1, 1, 1}, Table[Sum[(-1)^k b[n - 2 k] n (n - 1 - k)!/(k! (n - 2 k)!), {k, 0, n/2}], {n, 3, 20}]] ] (* Eric W. Weisstein, Sep 02 2025 *)
-
PARI
\\ here b(n) is A000085(n) b(n) = {sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))} a(n) = {if(n < 3, n >= 0, sum(k=0, n\2, (-1)^k*b(n-2*k)*n*(n-1-k)!/(k!*(n-2*k)!)))} \\ Andrew Howroyd, Aug 30 2019
Formula
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*A034807(n, k)*A000085(n-2*k) for n > 2. - Andrew Howroyd, Aug 30 2019
Extensions
Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019
Comments