A306437 Regular triangle read by rows where T(n,k) is the number of non-crossing set partitions of {1, ..., n} in which all blocks have size k.
1, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 0, 0, 0, 1, 1, 5, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 14, 0, 4, 0, 0, 0, 1, 1, 0, 12, 0, 0, 0, 0, 0, 1, 1, 42, 0, 0, 5, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 132, 55, 22, 0, 6, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 429, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 0 1 1 2 0 1 1 0 0 0 1 1 5 3 0 0 1 1 0 0 0 0 0 1 1 14 0 4 0 0 0 1 1 0 12 0 0 0 0 0 1 1 42 0 0 5 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 132 55 22 0 6 0 0 0 0 0 1 Row 6 counts the following non-crossing set partitions (empty columns not shown): {{1}{2}{3}{4}{5}{6}} {{12}{34}{56}} {{123}{456}} {{123456}} {{12}{36}{45}} {{126}{345}} {{14}{23}{56}} {{156}{234}} {{16}{23}{45}} {{16}{25}{34}}
Links
- Germain Kreweras, Sur les partitions non croisées d'un cycle, Discrete Math. 1 333-350 (1972).
- Wikipedia, Noncrossing partition.
Crossrefs
Programs
-
Maple
T:= (n, k)-> `if`(irem(n, k)=0, binomial(n, n/k)/(n-n/k+1), 0): seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, Feb 16 2019
-
Mathematica
Table[Table[If[Divisible[n,d],d/n*Binomial[n,n/d-1],0],{d,n}],{n,15}]
Formula
If d|n, then T(n, d) = binomial(n, n/d)/(n - n/d + 1); otherwise T(n, k) = 0 [Theorem 1 of Kreweras].