cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306463 a(n) = Sum_{k=0..n} Sum_{m=0..floor(k/2)} binomial(k-m, m)*binomial(n-k, k-m)^2.

Original entry on oeis.org

1, 1, 2, 6, 15, 37, 98, 262, 699, 1883, 5110, 13918, 38045, 104355, 287028, 791320, 2186209, 6051113, 16776022, 46577806, 129491865, 360432855, 1004332322, 2801307498, 7820572153, 21851390549, 61101872126, 170977916730, 478755116117, 1341389394715, 3760507521800
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 17 2019

Keywords

Crossrefs

Programs

  • Maxima
    a(n):=sum(sum(binomial(k-m,m)*binomial(n-k,k-m)^2,m,0,k/2),k,0,n);
    
  • PARI
    a(n) = sum(k=0, n, sum(m=0, k\2, binomial(k-m, m)*binomial(n-k, k-m)^2)); \\ Michel Marcus, Feb 18 2019
    
  • PARI
    N=66; x='x+O('x^N); Vec(1/sqrt(x^6+2*x^5-x^4-4*x^3-x^2-2*x+1)) \\ Seiichi Manyama, Feb 20 2019

Formula

G.f.: 1/sqrt(x^6 + 2*x^5 - x^4 - 4*x^3 - x^2 - 2*x + 1).
D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +(-n+1)*a(n-2) +2*(-2*n+3)*a(n-3) +(-n+2)*a(n-4) +(2*n-5)*a(n-5) +(n-3)*a(n-6)=0. - R. J. Mathar, Jan 16 2020