A306612 a(n) is the least integer k > 2 such that the remainder of -k modulo p is strictly increasing over the first n primes.
3, 4, 7, 8, 16, 16, 157, 157, 16957, 19231, 80942, 82372, 82372, 9624266, 19607227, 118867612, 4968215191, 31090893772, 118903377091, 187341482252, 1784664085208, 12330789708022, 68016245854132, 68016245854132, 10065964847743822, 74887595879692807, 1825207861455319267, 98403562254816509476, 283462437415903129597, 2126598918934702375802
Offset: 1
Examples
a(n) modulo 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... ===== ================================================== 3 1, 0, 2, 4, 8, 10, 14, 16, 20, 26, 28, ... 4 0, 2, 1, 3, 7, 9, 13, 15, 19, 25, 27, ... 7 1, 2, 3, 0, 4, 6, 10, 12, 16, 22, 24, ... 8 0, 1, 2, 6, 3, 5, 9, 11, 15, 21, 23, ... 16 0, 2, 4, 5, 6, 10, 1, 3, 7, 13, 15, ... 157 1, 2, 3, 4, 8, 12, 13, 14, 4, 17, 29, ... 16957 1, 2, 3, 4, 5, 8, 9, 10, 17, 8, 0, ... 19231 1, 2, 4, 5, 8, 9, 13, 16, 20, 25, 20, ... 80942 0, 1, 3, 6, 7, 9, 12, 17, 18, 26, 30, ...
Crossrefs
Cf. A306582.
Programs
-
PARI
isok(k, n) = {my(last = -1, cur); for (i=1, n, cur = -k % prime(i); if (cur <= last, return (0)); last = cur;); return (1);} a(n) = {my(k=3); while(!isok(k, n), k++); k;} \\ Michel Marcus, Jun 04 2019
-
Python
from sympy import prime def A306612(n): plist, x = [prime(i) for i in range(1,n+1)], 3 rlist = [-x % p for p in plist] while True: for i in range(n-1): if rlist[i] >= rlist[i+1]: break else: return x for i in range(n): rlist[i] = (rlist[i] - 1) % plist[i] x += 1 # Chai Wah Wu, Jun 15 2019
Extensions
a(16)-a(19) from Daniel Suteu, Jun 04 2019
a(20)-a(25) from Giovanni Resta, Jun 16 2019
a(26)-a(27) from Bert Dobbelaere, Jun 22 2019
a(28)-a(30) from Bert Dobbelaere, Sep 04 2019
Comments