A306582 a(n) is the least integer k such that the remainder of k modulo p is strictly increasing over the first n primes.
0, 2, 4, 34, 52, 194, 502, 1138, 4042, 5794, 5794, 62488, 798298, 5314448, 41592688, 483815692, 483815692, 5037219688, 18517814158, 18517814158, 19566774820732, 55249201504132, 1257253598786974, 6743244322196288, 24165921989926702, 24165921989926702, 5346711077171356252, 47449991406350138602, 278545375679341352084, 5604477496256287791854
Offset: 1
Examples
a(n) modulo 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... ==== ================================================== 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 2 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... 4 0, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... 34 0, 1, 4, 6, 1, 8, 0, 15, 11, 5, 3, ... 52 0, 1, 2, 3, 8, 0, 1, 14, 6, 23, 21, ... 194 0, 2, 4, 5, 7, 12, 7, 4, 10, 20, 8, ... 502 0, 1, 2, 5, 7, 8, 9, 8, 19, 9, 6, ... 1138 0, 1, 3, 4, 5, 7, 16, 17, 11, 7, 22, ... 4042 0, 1, 2, 3, 5, 12, 13, 14, 17, 11, 12, ... 5794 0, 1, 4, 5, 8, 9, 14, 18, 21, 23, 28, ...
Programs
-
PARI
isok(k, n) = {my(last = -1, cur); for (i=1, n, cur = k % prime(i); if (cur <= last, return (0)); last = cur;); return (1);} a(n) = {my(k=0); while(!isok(k, n), k++); k;} \\ Michel Marcus, Jun 04 2019
-
Python
from sympy import prime def A306582(n): plist, rlist, x = [prime(i) for i in range(1,n+1)], [0]*n, 0 while True: for i in range(n-1): if rlist[i] >= rlist[i+1]: break else: return x for i in range(n): rlist[i] = (rlist[i] + 1) % plist[i] x += 1 # Chai Wah Wu, Jun 15 2019
Extensions
a(16)-a(20) from Daniel Suteu, Jun 03 2019
a(21)-a(23) from Giovanni Resta, Jun 16 2019
a(24)-a(27) from Bert Dobbelaere, Jun 22 2019
a(28)-a(30) from Bert Dobbelaere, Sep 05 2019
Comments