cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306655 Numbers n such that lcm(sigma(n), n) = tau(n) * sigma(n) where sigma(k) = the sum of the divisors of k (A000203) and tau(k) = the number of divisors of k (A000005).

Original entry on oeis.org

1, 2, 18, 468, 9360, 10880, 79360, 84480, 387072, 777216, 3801600, 7282688, 15037440, 17418240, 27067392, 65544192, 752903424, 1218032640, 4227842304, 4737761280, 6410638080, 11949932544, 19327057920, 26372530800, 37645171200, 224956569600, 243520929792, 876611248128
Offset: 1

Views

Author

Jaroslav Krizek, Mar 03 2019

Keywords

Comments

Numbers n such that A009242(n) = A000005(n) * A000203(n) = A064840(n).
Also numbers n such that A017666(n) = denominator(sigma(n)/n) = tau(n) = A000005(n).
a(29) > 10^12. - Giovanni Resta, Mar 04 2019

Examples

			18 is a term because lcm(sigma(18), 18) = lcm(39, 18) = 234 = tau(18) * sigma(18) = 6 * 39.
		

Crossrefs

Cf. A069810 (gcd(sigma(n), n) = tau(n)).

Programs

  • Magma
    [n: n in [1..1000000] | LCM(SumOfDivisors(n), n) eq NumberOfDivisors(n)* SumOfDivisors(n)]
    
  • Mathematica
    Select[Range[1000000], LCM[DivisorSigma[1, #], #] == DivisorSigma[0, #] * DivisorSigma[1, #]&] (* Vaclav Kotesovec, Mar 04 2019 *)
  • PARI
    isok(n) = my(sn = sigma(n)); lcm(sn, n) == sn*numdiv(n); \\ Michel Marcus, Mar 04 2019

Extensions

a(13)-a(16) from Vaclav Kotesovec, Mar 04 2019
a(17) from Daniel Suteu, Mar 04 2019
a(18)-a(28) from Giovanni Resta, Mar 04 2019