A306759 Decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.
3, 3, 1, 7, 5, 4, 4, 6, 6
Offset: 0
Examples
1/7 + 1/13 + 1/31 + 1/43 + 1/73 + 1/127 + 1/157 + ... = 0.33175...
References
- Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 175.
Links
- Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature.
- Wikipedia, Goormaghtigh conjecture.
Crossrefs
Programs
-
PARI
brazil(N, L=List())=forprime(K=3, #binary(N+1)-1, for(n=2, sqrtnint(N-1, K-1), if(isprime((n^K-1)/(n-1)),listput(L, (n^K-1)/(n-1))))); Set(L); brazilcons(lim,nbd) = r=brazil(10^lim); x=sum(M=1, #r, 1./r[M]);for(n=1, nbd, print1(floor(x*10^n)%10, ", "));\\ Davis Smith, Mar 10 2019
-
PARI
cons(lim)=my(v=List(), t, k); for(n=2, sqrt(lim), t=1+n; k=1; while((t+=n^k++)<=lim, if(isprime(t), listput(v, t)))); v = vecsort(Vec(v), , 8); sum(k=1, #v, 1./v[k]); \\ Michel Marcus, Mar 11 2019
Formula
Equals Sum_{n>=1} 1/A085104(n).
Comments