cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306759 Decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.

Original entry on oeis.org

3, 3, 1, 7, 5, 4, 4, 6, 6
Offset: 0

Views

Author

Bernard Schott, Mar 08 2019

Keywords

Comments

The name "constant of Brazilian primes" is used in the article "Les nombres brésiliens" in link, théorème 4, page 36. Brazilian primes are in A085104.
Let S(k) be the sum of reciprocals of Brazilian primes < k. These values below come from different calculations by Jon, Michel, Daniel and Davis.
q S(10^q)
== ========================
1 0.1428571428571428571... (= 1/7)
2 0.2889927283868234859...
3 0.3229022355626914481...
4 0.3295236806353669357...
5 0.3312171311946179843...
6 0.3316038696349217289...
7 0.3317139158654747333...
8 0.3317434191078170412...
9 0.3317513267394988538...
10 0.3317535651668937256...
11 0.3317542057931842329...
12 0.3317543906772274268...
13 0.3317544444033188051...
14 0.3317544601136967527...
15 0.3317544647354485208...
16 0.3317544661014868080...
17 0.3317544665073451951...
18 0.3317544666282877863...
19 0.3317544666644601817...
20 0.3317544666753095766...
According to the Goormaghtigh conjecture, there are only two Brazilian primes which are twice Brazilian: 31 = (111)_5 = (11111)_2 and 8191 = (111)_90 = (1111111111111)_2. The reciprocals of these two numbers are counted only once in the sum.

Examples

			1/7 + 1/13 + 1/31 + 1/43 + 1/73 + 1/127 + 1/157 + ... = 0.33175...
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 175.

Crossrefs

Cf. A085104 (Brazilian primes), A002383 (Brazilian primes (111)_b), A225148 (Brazilian primes of the form (b^q-1)/(b-1) with q prime >= 5).
Cf. A173898 (sum of the reciprocals of the Mersenne primes), A065421 (Brun's constant).

Programs

  • PARI
    brazil(N, L=List())=forprime(K=3, #binary(N+1)-1, for(n=2, sqrtnint(N-1, K-1), if(isprime((n^K-1)/(n-1)),listput(L, (n^K-1)/(n-1))))); Set(L);
    brazilcons(lim,nbd) = r=brazil(10^lim); x=sum(M=1, #r, 1./r[M]);for(n=1, nbd, print1(floor(x*10^n)%10, ", "));\\ Davis Smith, Mar 10 2019
    
  • PARI
    cons(lim)=my(v=List(), t, k); for(n=2, sqrt(lim), t=1+n; k=1; while((t+=n^k++)<=lim, if(isprime(t), listput(v, t)))); v = vecsort(Vec(v), , 8); sum(k=1, #v, 1./v[k]); \\ Michel Marcus, Mar 11 2019

Formula

Equals Sum_{n>=1} 1/A085104(n).