cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306830 Integers k for which there exists a nonnegative integer j such that (s(k) + j) * reversal(s(k) + j) = k where s(k) is the sum of digits of k.

Original entry on oeis.org

1, 10, 40, 81, 90, 100, 121, 160, 250, 252, 360, 400, 403, 484, 490, 574, 640, 736, 765, 810, 900, 976, 1000, 1008, 1089, 1207, 1210, 1300, 1458, 1462, 1600, 1612, 1729, 1855, 1936, 1944, 2268, 2296, 2430, 2500, 2520, 2668, 2701, 2944, 3025, 3154, 3478, 3600, 3627, 3640, 4000, 4030, 4032, 4275
Offset: 1

Views

Author

Viorel Nitica, Mar 12 2019

Keywords

Comments

Subsequence of A305231. This sequence excludes for example 4 = (s(4) + (-2)) * (s(4) + (-2)) from that sequence. - David A. Corneth, Apr 15 2019

Examples

			The sum of the digits of 90 is 9 and (9+21)*reversal(9+21) = 30*3 = 90, so 90 is in the sequence.
The sum of the digits of 2268 is 18 and (18 + 18)*reversal(18 + 18) = 36*63 = 2268, so 2268 is in the sequence.
		

Crossrefs

Cf. A004086 (reversal), A007953 (sum of digits), A027750 (divisors), A305231.

Programs

  • Mathematica
    okQ[k_] := Module[{s, j}, s = Total[IntegerDigits[k]]; For[j = 0, jJean-François Alcover, Mar 17 2019 *)
  • PARI
    isok(k) = {my(s = sumdigits(k)); fordiv(k, d, if ((d>=s) && (k/d == fromdigits(Vecrev(digits(d)))), return (1));); return (0);} \\ Michel Marcus, Mar 13 2019
    
  • PARI
    upto(n) = {my(res = List([1, 10, 40, 81, 90]), m = 0); for(i = 10, 10*sqrtint(n), revi = fromdigits(Vecrev(digits(i))); if(revi <= i && i * revi <= n, m = i; listput(res, i * revi); ) ); q = #res; for(i = 1, #q, for(j = 1, logint(n \ res[i], 10), listput(res, res[i]*10^j); ) ); listsort(res, 1); res } \\ David A. Corneth, Apr 15 2019

Extensions

Name clarified by David A. Corneth, Apr 15 2019