cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A306847 a(n) = Sum_{k=0..floor(n/6)} binomial(n,6*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 8, 29, 85, 211, 463, 926, 1730, 3095, 5461, 9829, 18565, 37130, 77540, 164921, 349525, 728575, 1486675, 2973350, 5858126, 11450531, 22369621, 43942081, 87087001, 174174002, 350739488, 708653429, 1431655765, 2884834891, 5791193143
Offset: 0

Views

Author

Seiichi Manyama, Mar 13 2019

Keywords

Crossrefs

Column 6 of A306846.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n, 6*k], {k, 0, Floor[n/6]}]; Array[a, 36, 0] (* Amiram Eldar, Jun 21 2021 *)
  • PARI
    {a(n) = sum(k=0, n\6, binomial(n, 6*k))}
    
  • PARI
    N=66; x='x+O('x^N); Vec((1-x)^5/((1-x)^6-x^6))

Formula

G.f.: (1 - x)^5/((1 - x)^6 - x^6).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n > 5.
a(n) = (4^n + (1 - t)^n + (1 + t)^n + (3 - t)^n + (3 + t)^n)/(6*2^n) for n > 0 and a(0) = 1, where t = i*sqrt(3) and i = sqrt(-1). - Bruno Berselli, Mar 13 2019