A307059 Expansion of 1/(2 - Product_{k>=1} (1 - x^k)).
1, -1, 0, 1, -1, 1, -1, 1, 0, -2, 4, -4, 1, 3, -5, 4, -3, 3, -1, -6, 13, -12, 2, 9, -13, 10, -6, 6, -4, -9, 28, -30, 5, 25, -28, 5, 9, 7, -27, 11, 32, -47, 2, 51, -27, -74, 128, -34, -131, 183, -78, -15, -37, 97, 89, -480, 649, -242, -498, 904, -663, 223, -140, 169, 488, -1818
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(2 - (&*[1 - x^j: j in [1..m+2]])) )); // G. C. Greubel, Sep 08 2023 -
Mathematica
nmax=65; CoefficientList[Series[1/(2 - Product[(1 - x^k), {k, nmax}]), {x, 0, nmax}], x]
-
SageMath
from sage.modular.etaproducts import qexp_eta m=80; def f(x): return 1/(2 - qexp_eta(QQ[['q']], m+2).subs(q=x) ) def A307059_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307059_list(m) # G. C. Greubel, Sep 08 2023
Formula
a(0) = 1; a(n) = Sum_{k=1..n} A010815(k)*a(n-k).
G.f.: 1/(2 - QPochhammer(x)). - G. C. Greubel, Sep 08 2023
Comments