cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A307058 Expansion of 1/(2 - Product_{k>=1} (1 + x^(2*k-1))).

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 12, 21, 38, 68, 120, 212, 377, 670, 1188, 2107, 3740, 6638, 11778, 20898, 37084, 65808, 116775, 207212, 367696, 652478, 1157815, 2054524, 3645730, 6469316, 11479734, 20370656, 36147506, 64143372, 113821732, 201975429, 358403220, 635982680, 1128544452, 2002589998
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A000700.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - (&*[1 + x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*g(i), i=1..n))
        end:
    seq(a(n), n=0..39);  # Alois P. Heinz, Feb 09 2021
  • Mathematica
    nmax = 39; CoefficientList[Series[1/(2 - Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def f(x): return 1/(2 - product(1+x^(2*j-1) for j in range(1,m+3)))
    def A307058_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307058_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A000700(k)*a(n-k).
From G. C. Greubel, Jan 24 2024: (Start)
G.f.: (1+x)/(2*(1+x) - x*QPochhammer(-1/x; x^2)).
G.f.: 1/( 2 - x^(1/24)*etx(x^2)^2/(eta(x^4)*eta(x)) ), where eta(x) is the Dedekind eta function. (End)

A307057 Expansion of 1/(2 - Product_{k>=2} 1/(1 - x^k)).

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 15, 33, 55, 111, 195, 380, 684, 1306, 2389, 4507, 8313, 15591, 28881, 53991, 100257, 187086, 347860, 648512, 1206656, 2248399, 4185087, 7796011, 14514195, 27033073, 50334299, 93741325, 174552379, 325067573, 605316388, 1127249250, 2099115548, 3909023438, 7279285948
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A002865.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - 1/(&*[1 - x^j: j in [2..m+2]])) )); // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    nmax = 50; CoefficientList[Series[1/(2 - Product[1/(1 - x^k), {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0]= 1; a[n_]:= a[n]= Sum[(PartitionsP[k] -PartitionsP[k-1]) a[n-k], {k,n}];
    Table[a[n], {n,0,50}]
    CoefficientList[Series[1/(2 -(1-x)/QPochhammer[x]), {x,0,80}], x] (* G. C. Greubel, Jan 24 2024 *)
  • SageMath
    m=80;
    def f(x): return 1/( 2 - (1-x)/product(1 - x^j for j in range(1,m+3)) )
    def A307057_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307057_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A002865(k)*a(n-k).
a(n) ~ c / r^n, where r = 0.53700045638650021831634004949965496126950171484122... is the root of the equation 1 - r = 2*QPochhammer[r] and c = 0.2143395760756683581919851351414497181589685708674442097498294834747517926...
From G. C. Greubel, Jan 24 2024: (Start)
G.f.: 1/( 2 - (1-x)/QPochhammer(x) ).
G.f.: 1/( 2 - x^(1/24)*(1-x)/eta(x) ), where eta(x) is the Dedekind eta function. (End)

A307060 Expansion of 1/(2 - Product_{k>=1} 1/(1 + x^k)).

Original entry on oeis.org

1, -1, 1, -2, 4, -7, 12, -21, 38, -68, 120, -212, 377, -670, 1188, -2107, 3740, -6638, 11778, -20898, 37084, -65808, 116775, -207212, 367696, -652478, 1157815, -2054524, 3645730, -6469316, 11479734, -20370656, 36147506, -64143372, 113821732, -201975429, 358403220, -635982680, 1128544452, -2002589998
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A081362.

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - (&*[1-x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
    
  • Mathematica
    nmax = 39; CoefficientList[Series[1/(2 - Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def f(x): return 1/( 2 - product(1-x^(2*j-1) for j in range(1,m+3)) )
    def A307060_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307060_list(m) # G. C. Greubel, Jan 24 2024

Formula

G.f.: 1/(2 - Product_{k>=1} (1 - x^(2*k-1))).
a(0) = 1; a(n) = Sum_{k=1..n} A081362(k)*a(n-k).
From G. C. Greubel, Jan 24 2024: (Start)
G.f.: 1/(2 - QPochhammer(x)/QPochhammer(x^2)).
G.f.: 1/(2 - x^(1/24)*eta(x)/eta(x^2)), where eta(x) is the Dedekind eta function. (End)

A047265 Triangle T(n,k), for n >= 1, 1 <= k <= n, read by rows, giving coefficient of x^n in expansion of (Product_{j>=1} (1-(-x)^j) - 1 )^k.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 0, 1, -3, 1, -1, 0, 3, -4, 1, 0, -2, -1, 6, -5, 1, -1, 2, -3, -4, 10, -6, 1, 0, -2, 6, -3, -10, 15, -7, 1, 0, 2, -6, 12, 0, -20, 21, -8, 1, 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, -1, 2, -3, -6, 40, -65, 21, 62, -84, 45, -11, 1
Offset: 1

Views

Author

Keywords

Comments

This is an ordinary convolution triangle. If a column k=0 starting at n=0 is added, then this is the Riordan triangle R(1, f(x)), with
f(x) = Product_{j>=1} (1 - (-x)^j) - 1, generating {0, {A121373(n)}{n>=1}}. - _Wolfdieter Lang, Feb 16 2021

Examples

			Triangle starts:
   1,
  -1,   1,
   0,  -2,   1,
   0,   1,  -3,   1,
  -1,   0,   3,  -4,   1,
   0,  -2,  -1,   6,  -5,   1,
  -1,   2,  -3,  -4,  10,  -6,   1,
   0,  -2,   6,  -3, -10,  15,  -7,   1,
   0,   2,  -6,  12,   0, -20,  21,  -8,   1,
   0,   1,   6, -16,  19,   9, -35,  28,  -9,   1,
   0,   0,   0,  16, -35,  24,  28, -56,  36, -10,   1,
  -1,   2,  -3,  -6,  40, ...
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    T:= func< n,k | Coefficient(R!( (-1)^n*(-1 + (&*[1 - x^j: j in [1..n]]) )^k ), n) >;
    [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 07 2023
    
  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
          [1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    T:= proc(n, k) option remember;
         `if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
             (q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 07 2021
  • Mathematica
    T[n_, k_]:= SeriesCoefficient[(-1)^n*(Product[(1-x^j), {j,n}] - 1)^k, {x, 0, n}];
    Table[T[n, k], {n,12}, {k,n}]//Flatten (* Jean-François Alcover, Dec 05 2013 *)
  • PARI
    T(n,k) = polcoeff((-1)^n*(Ser(prod(i=1,n,1-x^i)-1)^k), n) \\ Ralf Stephan, Dec 08 2013
    
  • SageMath
    from sage.combinat.q_analogues import q_pochhammer
    P. = PowerSeriesRing(ZZ, 50)
    def T(n,k): return P( (-1)^n*(-1 + q_pochhammer(n,x,x) )^k ).list()[n]
    flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Sep 07 2023

Formula

G.f. column k: (Product_{j>=1} (1 - (-x)^j) - 1)^k, for k >= 1. See the name and a Riordan triangle comment above. - Wolfdieter Lang, Feb 16 2021
From G. C. Greubel, Sep 07 2023: (Start)
T(n, n) = 1.
T(n, n-1) = -A000027(n-1).
T(n, n-2) = A000217(n-3).
T(n, n-3) = -A000292(n-5).
Sum_{k=1..n} T(n, k) = (-1)^n * A307059(n).
Sum_{k=1..n} (-1)^k * T(n, k) = (-1)^n * A000041(n). (End)

A307062 Expansion of 1/(2 - Product_{k>=1} (1 + x^k)^k).

Original entry on oeis.org

1, 1, 3, 10, 29, 88, 264, 790, 2366, 7086, 21216, 63523, 190201, 569485, 1705121, 5105383, 15286247, 45769238, 137039743, 410316854, 1228548190, 3678451550, 11013817655, 32976968175, 98737827756, 295635383297, 885175234817, 2650343093602, 7935511791620, 23760073760720, 71141108467679
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A026007.
a(n) is the number of compositions of n where there are A026007(k) sorts of part k. - Joerg Arndt, Jan 24 2024

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - (&*[(1+x^j)^j: j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
    
  • Maple
    b:= proc(n) b(n):= add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n)) end:
    g:= proc(n) g(n):= `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n) end:
    a:= proc(n) a(n):= `if`(n=0, 1, add(g(k)*a(n-k), k=1..n)) end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Jan 24 2024
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def f(x): return 1/( 2 - product((1+x^j)^j for j in range(1,m+3)) )
    def A307062_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307062_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A026007(k)*a(n-k).

A307063 Expansion of 1/(2 - Product_{k>=1} (1 + k*x^k)).

Original entry on oeis.org

1, 1, 3, 10, 28, 85, 252, 745, 2202, 6530, 19326, 57194, 169341, 501242, 1483816, 4392531, 13002772, 38491212, 113943278, 337298400, 998482338, 2955742400, 8749688247, 25901125616, 76673399424, 226971213462, 671887935923, 1988945626648, 5887744768722, 17429103155892, 51594226501776
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A022629.
a(n) is the number of compositions of n where there are A022629(k) sorts of part k. - Joerg Arndt, Jan 24 2024

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - (&*[(1+j*x^j): j in [1..m+2]])) ));
    
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def f(x): return 1/( 2 - product(1+j*x^j for j in range(1,m+3)) )
    def A307063_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307063_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A022629(k)*a(n-k).

A341418 Triangle read by rows: T(n, m) gives the sum of the weights of weighted compositions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 0, 1, 3, 1, -1, 0, 3, 4, 1, 0, -2, 1, 6, 5, 1, -1, -2, -3, 4, 10, 6, 1, 0, -2, -6, -3, 10, 15, 7, 1, 0, -2, -6, -12, 0, 20, 21, 8, 1, 0, 1, -6, -16, -19, 9, 35, 28, 9, 1, 0, 0, 0, -16, -35, -24, 28, 56, 36, 10, 1, 1, 2, 3, -6, -40, -65, -21, 62, 84, 45, 11, 1
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2021

Keywords

Comments

The sums of row n are given in A000041(n), for n >= 1 (number of partitions).
A differently signed triangle is A047265.
One could add a column m = 0 starting at n = 0 with T(0, 0) = 1 and T(n, 0) = 0 otherwise, by including the empty partition with no parts.
For the weights w of positive integer numbers n see a comment in A339885. It is w(n) = -A010815(n), for n >= 0. Also w(n) = A257628(n), for n >= 1.
The weight of a composition is the one of the respective partition, obtained by the product of the weights of the parts.
That the row sums give the number of partitions follows from the pentagonal number theorem. See also the Apr 04 2013 conjecture in A000041 by Gary W. Adamson, and the hint for the proof by Joerg Arndt. The INVERT map of A = {1, 1, 0, 0, -5, -7, ...}, with offset 1, gives the A000041(n) numbers, for n >= 0.
If the above mentioned column for m = 0, starting at n = 0 is added this is an ordinary convolution triangle of the Riordan type R(1, f(x)), with f(x) = -(Product_{j>=1} (1 - x^j) - 1), generating {A257628(n)}{n>=0}. See the formulae below. - _Wolfdieter Lang, Feb 16 2021

Examples

			The triangle T(n, m) begins:
  n\m   1  2  3   4   5   6   7  8  9 10 11 12 ... A000041
  --------------------------------------------------------
  1:    1                                                1
  2:    1  1                                             2
  3:    0  2  1                                          3
  4:    0  1  3   1                                      5
  5:   -1  0  3   4   1                                  7
  6:    0 -2  1   6   5   1                             11
  7:   -1 -2 -3   4  10   6   1                         15
  8:    0 -2 -6  -3  10  15   7  1                      22
  9:    0 -2 -6 -12   0  20  21  8  1                   30
  10:   0  1 -6 -16 -19   9  35 28  9  1                42
  11:   0  0  0 -16 -35 -24  28 56 36 10  1             56
  12:   1  2  3  -6 -40 -65 -21 62 84 45 11  1          77
  ...
For instance the case n = 6: The relevant weighted partitions with parts from the pentagonal numbers and number of compositions are: m = 2: 2*(1,-5) = -2*(1,5), m = 3: 1*(2^3), m = 4: 3*(1^2,2^2), m = 5: 1*(1^4,2), m = 6: 1*(1^6). The other partitions have weight 0.
		

Crossrefs

Cf. A000041, A008284, A010815, A047265, A257628, -A307059 (alternating row sums), A339885 (for partitions).

Programs

  • Maple
    # Using function PMatrix from A357368. Adds a row and a column for n, m = 0.
    PMatrix(14, proc(n) 24*n+1; if issqr(%) then sqrt(%); -(-1)^irem(iquo(%+irem(%,6),6),2) else 0 fi end); # Peter Luschny, Oct 06 2022
  • Mathematica
    nmax = 12;
    col[m_] := col[m] = (-(Product[(1-x^j), {j, 1, nmax}]-1))^m // CoefficientList[#, x]&;
    T[n_, m_] := col[m][[n+1]];
    Table[T[n, m], {n, 1, nmax}, {m, 1, n}] // Flatten (* Jean-François Alcover, Oct 23 2023 *)

Formula

T(n, m) = Sum_{j=1..p(n,m)} w(Part(n, m, j))*M0(n, m, j), where p(n, m) = A008284(n, m), M0(n, m, j) are the multinomials from A048996, i.e., m!/Prod_{k=1..m} e(n,m,j,k)! with the exponents of the parts, and the ternary weight of the j-th partition of n with m parts Part(n,m,j), in Abramowitz-Stegun order, is defined as the product of the weights of the parts, using w(n) = -A010815(n), for n >= 1, and m = 1, 2, ..., n.
From Wolfdieter Lang, Feb 16 2021: (Start)
G.f. column m: G(m, x) = ( -(Product_{j>=1} (1 - x^j) - 1) )^m, for m >= 1.
G.f. of row polynomials R(n, x) = Sum_{m=1..n}, that is g. f. of the triangle:
GfT(z, x) = 1/(1 - x*G(1, z)) - 1. Riordan triangle (without m = 0 column). (End)
Showing 1-7 of 7 results.