A307058
Expansion of 1/(2 - Product_{k>=1} (1 + x^(2*k-1))).
Original entry on oeis.org
1, 1, 1, 2, 4, 7, 12, 21, 38, 68, 120, 212, 377, 670, 1188, 2107, 3740, 6638, 11778, 20898, 37084, 65808, 116775, 207212, 367696, 652478, 1157815, 2054524, 3645730, 6469316, 11479734, 20370656, 36147506, 64143372, 113821732, 201975429, 358403220, 635982680, 1128544452, 2002589998
Offset: 0
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[1 + x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([0, d, -d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-i)*g(i), i=1..n))
end:
seq(a(n), n=0..39); # Alois P. Heinz, Feb 09 2021
-
nmax = 39; CoefficientList[Series[1/(2 - Product[(1 + x^(2 k - 1)), {k, 1, nmax}]), {x, 0, nmax}], x]
-
m=80;
def f(x): return 1/(2 - product(1+x^(2*j-1) for j in range(1,m+3)))
def A307058_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307058_list(m) # G. C. Greubel, Jan 24 2024
A307057
Expansion of 1/(2 - Product_{k>=2} 1/(1 - x^k)).
Original entry on oeis.org
1, 0, 1, 1, 3, 4, 10, 15, 33, 55, 111, 195, 380, 684, 1306, 2389, 4507, 8313, 15591, 28881, 53991, 100257, 187086, 347860, 648512, 1206656, 2248399, 4185087, 7796011, 14514195, 27033073, 50334299, 93741325, 174552379, 325067573, 605316388, 1127249250, 2099115548, 3909023438, 7279285948
Offset: 0
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - 1/(&*[1 - x^j: j in [2..m+2]])) )); // G. C. Greubel, Jan 24 2024
-
nmax = 50; CoefficientList[Series[1/(2 - Product[1/(1 - x^k), {k, 2, nmax}]), {x, 0, nmax}], x]
a[0]= 1; a[n_]:= a[n]= Sum[(PartitionsP[k] -PartitionsP[k-1]) a[n-k], {k,n}];
Table[a[n], {n,0,50}]
CoefficientList[Series[1/(2 -(1-x)/QPochhammer[x]), {x,0,80}], x] (* G. C. Greubel, Jan 24 2024 *)
-
m=80;
def f(x): return 1/( 2 - (1-x)/product(1 - x^j for j in range(1,m+3)) )
def A307057_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307057_list(m) # G. C. Greubel, Jan 24 2024
A307060
Expansion of 1/(2 - Product_{k>=1} 1/(1 + x^k)).
Original entry on oeis.org
1, -1, 1, -2, 4, -7, 12, -21, 38, -68, 120, -212, 377, -670, 1188, -2107, 3740, -6638, 11778, -20898, 37084, -65808, 116775, -207212, 367696, -652478, 1157815, -2054524, 3645730, -6469316, 11479734, -20370656, 36147506, -64143372, 113821732, -201975429, 358403220, -635982680, 1128544452, -2002589998
Offset: 0
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[1-x^(2*j-1): j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
-
nmax = 39; CoefficientList[Series[1/(2 - Product[1/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
-
m=80;
def f(x): return 1/( 2 - product(1-x^(2*j-1) for j in range(1,m+3)) )
def A307060_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307060_list(m) # G. C. Greubel, Jan 24 2024
A047265
Triangle T(n,k), for n >= 1, 1 <= k <= n, read by rows, giving coefficient of x^n in expansion of (Product_{j>=1} (1-(-x)^j) - 1 )^k.
Original entry on oeis.org
1, -1, 1, 0, -2, 1, 0, 1, -3, 1, -1, 0, 3, -4, 1, 0, -2, -1, 6, -5, 1, -1, 2, -3, -4, 10, -6, 1, 0, -2, 6, -3, -10, 15, -7, 1, 0, 2, -6, 12, 0, -20, 21, -8, 1, 0, 1, 6, -16, 19, 9, -35, 28, -9, 1, 0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1, -1, 2, -3, -6, 40, -65, 21, 62, -84, 45, -11, 1
Offset: 1
Triangle starts:
1,
-1, 1,
0, -2, 1,
0, 1, -3, 1,
-1, 0, 3, -4, 1,
0, -2, -1, 6, -5, 1,
-1, 2, -3, -4, 10, -6, 1,
0, -2, 6, -3, -10, 15, -7, 1,
0, 2, -6, 12, 0, -20, 21, -8, 1,
0, 1, 6, -16, 19, 9, -35, 28, -9, 1,
0, 0, 0, 16, -35, 24, 28, -56, 36, -10, 1,
-1, 2, -3, -6, 40, ...
-
R:=PowerSeriesRing(Integers(), 40);
T:= func< n,k | Coefficient(R!( (-1)^n*(-1 + (&*[1 - x^j: j in [1..n]]) )^k ), n) >;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 07 2023
-
g:= proc(n) option remember; `if`(n=0, 1, add(add([-d, d, -2*d, d]
[1+irem(d, 4)], d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, g(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Feb 07 2021
-
T[n_, k_]:= SeriesCoefficient[(-1)^n*(Product[(1-x^j), {j,n}] - 1)^k, {x, 0, n}];
Table[T[n, k], {n,12}, {k,n}]//Flatten (* Jean-François Alcover, Dec 05 2013 *)
-
T(n,k) = polcoeff((-1)^n*(Ser(prod(i=1,n,1-x^i)-1)^k), n) \\ Ralf Stephan, Dec 08 2013
-
from sage.combinat.q_analogues import q_pochhammer
P. = PowerSeriesRing(ZZ, 50)
def T(n,k): return P( (-1)^n*(-1 + q_pochhammer(n,x,x) )^k ).list()[n]
flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Sep 07 2023
A307062
Expansion of 1/(2 - Product_{k>=1} (1 + x^k)^k).
Original entry on oeis.org
1, 1, 3, 10, 29, 88, 264, 790, 2366, 7086, 21216, 63523, 190201, 569485, 1705121, 5105383, 15286247, 45769238, 137039743, 410316854, 1228548190, 3678451550, 11013817655, 32976968175, 98737827756, 295635383297, 885175234817, 2650343093602, 7935511791620, 23760073760720, 71141108467679
Offset: 0
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[(1+x^j)^j: j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024
-
b:= proc(n) b(n):= add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n)) end:
g:= proc(n) g(n):= `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n) end:
a:= proc(n) a(n):= `if`(n=0, 1, add(g(k)*a(n-k), k=1..n)) end:
seq(a(n), n=0..45); # Alois P. Heinz, Jan 24 2024
-
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
-
m=80;
def f(x): return 1/( 2 - product((1+x^j)^j for j in range(1,m+3)) )
def A307062_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307062_list(m) # G. C. Greubel, Jan 24 2024
A307063
Expansion of 1/(2 - Product_{k>=1} (1 + k*x^k)).
Original entry on oeis.org
1, 1, 3, 10, 28, 85, 252, 745, 2202, 6530, 19326, 57194, 169341, 501242, 1483816, 4392531, 13002772, 38491212, 113943278, 337298400, 998482338, 2955742400, 8749688247, 25901125616, 76673399424, 226971213462, 671887935923, 1988945626648, 5887744768722, 17429103155892, 51594226501776
Offset: 0
-
m:=80;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1/(2 - (&*[(1+j*x^j): j in [1..m+2]])) ));
-
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
-
m=80;
def f(x): return 1/( 2 - product(1+j*x^j for j in range(1,m+3)) )
def A307063_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).list()
A307063_list(m) # G. C. Greubel, Jan 24 2024
A341418
Triangle read by rows: T(n, m) gives the sum of the weights of weighted compositions of n with m parts from generalized pentagonal numbers {A001318(k)}_{k>=1}.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 0, 1, 3, 1, -1, 0, 3, 4, 1, 0, -2, 1, 6, 5, 1, -1, -2, -3, 4, 10, 6, 1, 0, -2, -6, -3, 10, 15, 7, 1, 0, -2, -6, -12, 0, 20, 21, 8, 1, 0, 1, -6, -16, -19, 9, 35, 28, 9, 1, 0, 0, 0, -16, -35, -24, 28, 56, 36, 10, 1, 1, 2, 3, -6, -40, -65, -21, 62, 84, 45, 11, 1
Offset: 1
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... A000041
--------------------------------------------------------
1: 1 1
2: 1 1 2
3: 0 2 1 3
4: 0 1 3 1 5
5: -1 0 3 4 1 7
6: 0 -2 1 6 5 1 11
7: -1 -2 -3 4 10 6 1 15
8: 0 -2 -6 -3 10 15 7 1 22
9: 0 -2 -6 -12 0 20 21 8 1 30
10: 0 1 -6 -16 -19 9 35 28 9 1 42
11: 0 0 0 -16 -35 -24 28 56 36 10 1 56
12: 1 2 3 -6 -40 -65 -21 62 84 45 11 1 77
...
For instance the case n = 6: The relevant weighted partitions with parts from the pentagonal numbers and number of compositions are: m = 2: 2*(1,-5) = -2*(1,5), m = 3: 1*(2^3), m = 4: 3*(1^2,2^2), m = 5: 1*(1^4,2), m = 6: 1*(1^6). The other partitions have weight 0.
-
# Using function PMatrix from A357368. Adds a row and a column for n, m = 0.
PMatrix(14, proc(n) 24*n+1; if issqr(%) then sqrt(%); -(-1)^irem(iquo(%+irem(%,6),6),2) else 0 fi end); # Peter Luschny, Oct 06 2022
-
nmax = 12;
col[m_] := col[m] = (-(Product[(1-x^j), {j, 1, nmax}]-1))^m // CoefficientList[#, x]&;
T[n_, m_] := col[m][[n+1]];
Table[T[n, m], {n, 1, nmax}, {m, 1, n}] // Flatten (* Jean-François Alcover, Oct 23 2023 *)
Showing 1-7 of 7 results.
Comments