A307062 Expansion of 1/(2 - Product_{k>=1} (1 + x^k)^k).
1, 1, 3, 10, 29, 88, 264, 790, 2366, 7086, 21216, 63523, 190201, 569485, 1705121, 5105383, 15286247, 45769238, 137039743, 410316854, 1228548190, 3678451550, 11013817655, 32976968175, 98737827756, 295635383297, 885175234817, 2650343093602, 7935511791620, 23760073760720, 71141108467679
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(2 - (&*[(1+x^j)^j: j in [1..m+2]])) )); // G. C. Greubel, Jan 24 2024 -
Maple
b:= proc(n) b(n):= add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n)) end: g:= proc(n) g(n):= `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n) end: a:= proc(n) a(n):= `if`(n=0, 1, add(g(k)*a(n-k), k=1..n)) end: seq(a(n), n=0..45); # Alois P. Heinz, Jan 24 2024
-
Mathematica
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
-
SageMath
m=80; def f(x): return 1/( 2 - product((1+x^j)^j for j in range(1,m+3)) ) def A307062_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307062_list(m) # G. C. Greubel, Jan 24 2024
Formula
a(0) = 1; a(n) = Sum_{k=1..n} A026007(k)*a(n-k).
Comments