A307063 Expansion of 1/(2 - Product_{k>=1} (1 + k*x^k)).
1, 1, 3, 10, 28, 85, 252, 745, 2202, 6530, 19326, 57194, 169341, 501242, 1483816, 4392531, 13002772, 38491212, 113943278, 337298400, 998482338, 2955742400, 8749688247, 25901125616, 76673399424, 226971213462, 671887935923, 1988945626648, 5887744768722, 17429103155892, 51594226501776
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
m:=80; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(2 - (&*[(1+j*x^j): j in [1..m+2]])) )); -
Mathematica
nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
-
SageMath
m=80; def f(x): return 1/( 2 - product(1+j*x^j for j in range(1,m+3)) ) def A307063_list(prec): P.
= PowerSeriesRing(QQ, prec) return P( f(x) ).list() A307063_list(m) # G. C. Greubel, Jan 24 2024
Formula
a(0) = 1; a(n) = Sum_{k=1..n} A022629(k)*a(n-k).
Comments