cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A307063 Expansion of 1/(2 - Product_{k>=1} (1 + k*x^k)).

Original entry on oeis.org

1, 1, 3, 10, 28, 85, 252, 745, 2202, 6530, 19326, 57194, 169341, 501242, 1483816, 4392531, 13002772, 38491212, 113943278, 337298400, 998482338, 2955742400, 8749688247, 25901125616, 76673399424, 226971213462, 671887935923, 1988945626648, 5887744768722, 17429103155892, 51594226501776
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 21 2019

Keywords

Comments

Invert transform of A022629.
a(n) is the number of compositions of n where there are A022629(k) sorts of part k. - Joerg Arndt, Jan 24 2024

Crossrefs

Programs

  • Magma
    m:=80;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1/(2 - (&*[(1+j*x^j): j in [1..m+2]])) ));
    
  • Mathematica
    nmax = 30; CoefficientList[Series[1/(2 - Product[(1 + k x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
  • SageMath
    m=80;
    def f(x): return 1/( 2 - product(1+j*x^j for j in range(1,m+3)) )
    def A307063_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).list()
    A307063_list(m) # G. C. Greubel, Jan 24 2024

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A022629(k)*a(n-k).